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« Preface

This book, ‘Linear Algebra with Sage’, has two goals. The first
goal is to explain Linear Algebra with the help of Sage. Sage is one
| of the most popular computer algebra system(CAS). Sage is a free
| and user-friendly software. Whenever the Sage codes are possible,

we illustrate examples with Sage codes. The second goal is to make
the book accessible to everyone in the world freely. Therefore, the pdf file of this

book is free to use in class or in person. For commercial use, please contact us.

L : gE SEOUL Linear Algebra is regarded as
‘ w ‘u KOREA one of the most important

mathematical subjects because it
is used not only in natural sciences and engineering applications but also in
humanities and social sciences. Nowadays, Linear Algebra is studied most actively
in the 21st century.

One of the roles of mathematics in society is to suggest a possible solution by
modeling a practical problem as a mathematical problem, by solving it with the
idea of a system of linear equations, and by interpreting the solution in the setting
of the original problem. The first computer is also based on the linear process.
The study and applications of Linear Algebra grew incredibly in the later part of
the 20th century.

[t is interesting to note that Sylvester and Cayley, inventors of
/?ﬁ\§ matrices, and Babbage, father of the computer, were
mathematicians in the 19th century from United Kingdom. Since
then, the study of matrix theory has progressed and contributed to

the development of physics by the appearance of infinite dimensions and tensors.

Matrix theory in the United States of America was neglected from

.,
‘.; -1 \g ?(E:ﬁl‘“' the European mathematical society before the Second World War.
*et 2014 After that, because the modern computers were built and the

numerical power of matrices became very useful, the matrix
theory was developed well in the United Sates in the 20th century. The United
States has grown as a unique super power in both theories and experiments of

sciences.
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1.1 Vectors in n-space

1.2 Inner product and Orthogonality

1.3 Vector equations of lines and planes
1.4 Excercise

Linear algebra is the branch of mathematics
concerning vectors and mappings. Linear algebra is
central to both pure and applied mathematics.
Combined with calculus, linear algebra facilitates the
solution of linear systems of differential equations.

Techniques from linear algebra are also used in

analytic geometry, engineering, physics, natural
sciences, computer science, computer animation, and the social sciences
(particularly in economics). A geometric quantity described by a magnitude and a
direction is called a vector. In this chapter, we begin with studying basic
properties of vectors starting from 3-dimensional vectors and extending these
properties to n-dimensional vectors. We will also discuss the notion of the dot

product (or inner product) of vectors and vector equations of lines and planes.

Introduction : http://youtu.be/Mxple2Zzg-A


http://youtu.be/Mxp1e2Zzg-A

N *Vectors in n-space

| e Reference video: http://youtu.be/aeLVQoOPQMPE http://youtu.be/85kGKBbJLns
e Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—1—Sec—1—1.html

Among the physical quantities we use and encounter in everyday life,
scalar (e.g. length, area, mass, temperature, etc.) is a quantity that can

be completely described by a single real number. A vector (e.g. force,

velocity, change in position, etc.) is a geometric quantity described by a

magnitude and a direction.

Scalar: length, area, mass, temperature- a one-dimensional physical quantity,
i.e. one that can be described by a single real number.

Vector : velocity, change in position, force - a geometric quantity described by a

magnitude and a direction.

A vector can be sketched as a directed line segment; in 2-and 3-dimensional

space, vectors are often drawn as arrows.

B (terminal point)
x=AB

A (initial point)

Figure 1

A vector with the same initial and terminal points with magnitude 0 is called the
zero (or null) vector. (Since its magnitude is 0, it does not have a specific
direction).

In physics, vectors provide a useful way to express velocity, acceleration, force,
and the laws of motion. A force vector can be broken down into mutually
perpendicular component vectors. An electric field can be visualized by field
vectors, which indicate both the magnitude and direction of the field at every
point in space. Vectors have a wide variety of applications in the social

sciences, such as population dynamics and economics.


http://youtu.be/aeLVQoPQMpE
http://youtu.be/85kGK6bJLns
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-1-Sec-1-1.html

..................

...................

Figure 2

From now on, unless noted otherwise, we will restrict scalars to real numbers -

that is, if k£ is a scalar, k€ R..

Definition [Vector Addition and Scalar Multiplication]

For any two vectors x, y, and scalar k, the sum of x and y, x+t+vy,
and the scalar multiple of x by k, kx, are defined as follows.

(1) The sum of x and y is found by placing x and y tail-to-tail to form
two adjacent sides of a parallelogram. The diagonal of this
parallelogram is x+y. This is called the Parallelogram Law. (See Figure
3.)

(2) The scalar multiple of x by a scalar k, is a vector with magntitude
|k| times the magnitude of x and with the same direction as x if
k>0, and is opposite to x if k< 0. (See Figure 4.) If k is 0, kx is the

zero vector.

M e / T
X 2x 2x

Figure 3 Figure 4

@ In the real coordinate plane R?={(z, z,)|z,, z,ER}, the initial and terminal
points of every vector determine its the magnitude and direction. If vectors
have the same magnitude and direction, even if they are in different positions,

we regard these vectors as equivalent.



Definition

An ordered pair of real numbers (z,,z,) is called a vector (in R?)
and can be written as

X
x=(z,, z,) or x=|""

Ty ’
Here, z,, z, are called the components of x.

Definition Equivalence

X
Two vectors x,yER?, x= .
2

and y= [yl

Yo

with z;, =y,, =, =y,, then

we say that x and y are equivalent (or equal) and we write x =y.

[Remark] The case when the initial point is not at the origin.

A directed line from the point P(z,,z,) to the point Q(y;,y,) is a vector with

the following components: P—Cj: 0Q'=(y,—x,,yo—2x,). The initial point of the

vector 0OQ= (z,,7,) is at the origin 0(0,0) and the terminal point is P(z,, z,).

P Q
x o 'l
.
o Q'
Figure 5

" For 000,0), P.(0,—4), P(—3.1), Q23). Q2 —1), Q(-1,4) R’

B —

P,Q,, P,@, in component form.

B —

express the vectors 0@Q,

0G=(2,3), P,Qi= 0Q,— OP,= (2, —1)— (0, —4) = (2,3),
Py@Qy= 0Q,— OPy=(—1,4)—(=3,1)=(2,3)

_'IO_



P,@, and P,(), are equivalent.

Copy the following code into http://sage.skku.edu
or http://mathlab.knou.ac.kr:8080/ to practice.

o=vector([0, 0]) #creates a vector, x=vector([component z;, component z,])
pl=vector([0, -4])

p2=vector([-3, 1])

q=vector([2, 3])

gl=vector([2, -1])

g2=vector([-1, 4])

print "vector OQ=", g-o # subtract
print "vector P1Q1=", ql-pl # subtract
print "vector P20Q2=", q2-p2 # subtract

print "vector OQ = vector P1Q1= vector P2Q2"

vector OQ= (2, 3)
vector P1Q1= (2, 3)
vector P2Q2= (2, 3)

vector vector OQ = P1Ql= vector P2Q2 [ |
Definition
- 7331 Y1) . 2
For any two vectors x= el VYT y in R* and scalar k, the sum of
[ %2 2

x and y, x+y, and the scalar multiple of x by k, kx, are defined
component-wise as follows.
leryl}

ii) kx=
ETR (i)

k;arl}

(i) x+y= s

In R?, the zero vector is a vector where all its components are equal
to O (its initial point is taken to be the origin). Then, for an arbitrary

x in R?, it is clear that

x+0=x, x+(—1)x=0.

Here, taking (—1)x=—x, we call —x the negative vector or additive

inverse of x.

_’I'I_


http://sage.skku.edu
http://mathlab.knou.ac.kr:8080

[Remark] Computer Simulations

[Scalar multiplication] http://matrix.skku.ac.kr/2012-album/2.html
[Vector addition] http://matrix.skku.ac.kr/2012-album/3.html

ads

szszszszszszsz

u=(6.2,1.39)
v=(-3.54,47)

M For vectors xz[l], yz[_2] in R? | find x+y, x—vy, and (—2)x.

4
e http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi.html

Copy the following code into http://sage.skku.edu
or http://mathlab.knou.ac.kr:8080/ to practice.

y=vector([-2, 4])

include '*' when multiplying)

x=vector([1, 2]) #creates a vector, x=vector([component x;, component z,])

print "x+y=", x+y # adds vectors
print "x-y=", x-y # subtract vectors
print "-2xx=", -2%x # multiplies vectors by scalar, (you must

x+y=(-1, 6)
x-y=(3, -2)
~2xx=(-2, -4)
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In R?={(2y, zy, #3)| 2, 75, 2;€ R}, we define vectors as follows.

Definition

A 3-tuple of real numbers (z,, z,, #;) is called a vector (in R®) and
can be written as

Ly

X=(a:1, Lo, 333) = [T2

T3lgx1

Here, z,, z,, z; are called the components of x.

Definition [Equivalence or Equality]

L1 Y1
Two vectors x,yER®, x=|zy|and y=|ys|with =, =y,, 2y =y,. =3 =1ys,.
T3 Y3

are said to be equivalent (or equal) and we write x =y.

[Remark] The case when the initial point is the origin.

A directed line from the pont P(z,,x,, z;) to the point Q(y;, v, y3) is a vector

with the following components: PQ = (y; — 1, 3y — T9, y3 —23) = OQ".

_13_
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-3.1
04

22 41

Figure 6

For Pi(0.—4.2), P,(=3,1,0), Q(2.3.4), Q,(2.—1,6). Q,(~1,44) €R’,

_

express the vectors 0Q, P,@,, P,@, in component form.

00=(2,3,4), P,Q,= 0Q,— OP,= (2, —1,6)— (0, —4,2) = (2,3,4),
P2Q2: OQZ_ OP2: (_ 15474)_ (_ 35 170) = (27374)

P,@Q,and P,(Q, are equivalent.

Copy the following code into http://sage.skku.edu
or http://mathlab.knou.ac.kr:8080/ to practice.

o=vector([0, 0, 0]) #creates a vector
pl=vector([0, -4, 2])

p2=vector([-3, 1, 0])

g=vector([2, 3, 4])

ql=vector([2, -1, 6])

g2=vector([-1, 4, 4])

print "vector OQ=", gq-o # subtract
print "vector P1Q1=", ql-pl # subtract
print "vector P202=", q2-p2 # subtract

print "vector OQ = vector P1Ql= vector P2Q2"

vector OQ= (2, 3, 4)

vector P1Ql= (2, 3, 4)

vector P2Q2= (2, 3, 4)

vector OQ = vector P1Ql= vector P2Q2 [ |

_14_
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Definition

For any two vectors

Ty Y1
X=|Z2|, Y=1|Y2
L3 Ys

in R?® and scalar k, the sum of x and y, x+y, and the scalar
multiple of x by k, kx, are defined component-wise as follows:

Z’l+y1 kxl
(i) x+ty=|z2t ¥, (i) kx=|kz,|.
Ty T Y3 kx

In R?, the zero vector is a vector where all its components are equal
to 0 (its initial point is taken to be the origin). Then, for an arbitrary

x in R?, it is clear that
x+0=x, x+(—1)x=0.

Here, taking (—1)x=—x, we call —x, the negative vector of x.

The Euclidean spaces R? and R?® can be generalized to n-dimensional

Euclidean space R" as follows:

]Rn:{(xlv va 71.”)'3?16 R7i:1727 cee 7n}

R™ is also called n-dimensional space and elements of R" are called
n-dimensional vectors. (We shall formally define vector space later.)

Definition

An ordered n-tuple of real numbers (z,, z, ...z,) is called a n

-dimensional vector and can be written as

Ty
Ty
X=(l’1,x2, ,xn) = .
Ln nx1
Here, real numbers z,, z,, ..., z, are called the components of x.

_15_



Definition [Equivalence or Equality]

For vectors x,y €R",

Ly Y1
x
x=|"2| y= :y2
xn yll
if z,=y, (i=1,2, ...,n) then we say x and y are equivalent (or equal)
and we write x =vy.
Definition
For any two vectors
Ty U
X
X = :2 L y= :yQ
xn y’ﬂ

in R" and scalar k, the sum of x and y, x+y, and the scalar
multiple of x by k, kx, are defined component-wise as follows:

xt kx,

+ k
(i) x+y=|"2"" (i) kx=|""2
In + yn kxn

In R", the zero vector is a vector where all its components are equal
to 0 (its initial point is taken to be the origin). Then, for an arbitrary

x in R", it is clear that

x+0=x, x+(—1)x=0.

Here, taking (—1)x =—x, we call —x, the negative vector of x.

_16_



! ~2

Find x+vy, x—vy, (—2)x when x= _:23 and y= 11 in R*.
4 0

e http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi-3.html

E§E
X+Y: (1727 _374)+(_2747170):(_ 1767 _274),
X—Y:(L?y—374)—(—2,471@):(37—2’—4,4), =
(_Q)X: (_2)(1a27 _3a4): (_27 _4767 _8) U

Copy the following code into http://sage.skku.edu to practice.

x=vector([1, 2, -3, 4])
y=vector([-2, 4, 1, 0])

print "x+y=", x+y # adds vectors
print "x-y=", x-y # subtracts vectors
print "-2xx=", -2*x

x+y=(-1, 6, -2, 4)
x-y=(3, -2, -4, 4)
-2*x=(-2, -4, 6, -8) [ |

Theorem 1.1.1

If x, v, z are vectors in € R" and h and k are scalars, then

k(x+y)=kx+ky
(h+ k)x= hx+ kx

(1)

(2)

(3)

(4) x+(=x)=0=(—x)+x
(5)

(6)

(7) (hk)x= h(kx)

(8)

The proof of above theorem is simple and follows from properties of addition and

multiplication of real numbers.

_17_
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Theorem 1.1.2

If x is a vector in € R" and k is a scalar, then

Definition
For vectors v, v,,...,v, in R" and scalars ¢, ¢y, ..., ¢,
X= V) T cyVy o+ vy,

is called a linear combination of v,,v,,...,v;.

1 [2 5
. o2l ] 4 =2l o4
Find 2x— 3y +z, when x= 5 v=l and z= 3 in R*.

4 0 7

e http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi-3.html

2

2x —3y +z=(13,—10, —6,1) o

Copy the following code into http://sage.skku.edu or
http://mathlab.knou.ac.kr:8080/ to practice.

x=vector([1, 2, -3, 4])
y=vector([-2, 4, 1, 0])
z=vector([5, -2, 3, -7])
print "2#x-3xy+z=", 2%x-3*y+z # linear combination

2xx-3xy+z=(13, -10, -6, 1)

_18_


http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi-3.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080

. The above w can also be done in Sage as follows. First, we build

the relevant vectors and the command for a linear combination of many

vectors. Then, we can combine all into one line, as follows.

Copy the following code into http://sage.skku.edu or
http://mathlab.knou.ac.kr:8080/ to practice.

x=vector(QQ, [1, 2, -3, 4]) # computations with quotient numbers in Q
y=vector(QQ, [-2, 4, 1, 0])

z=vector(QQ, [5, -2, 3, -7])

print "2#x-3xy+z=", 2%x-3*y+z # linear combination
vectors = [x, y, Z]

scalars = [2, -3, 1]

multiples = [scalars[i]*vectors|i] for i in range(3)]

print "a*x+b*y+c*z=", sum(multiples) # linear combination

2xx-3*y+z = (13, -10, -6, 1)
axx+b*y+cxz = (13, -10, -6, 1) [ |

(Comment : We can create an applet to generate a random vectors and scalars

and find the linear combination, as well.)

Rob Beezer's Linear Combination Lab: http://linear.ups.edu/html/section-LC.html

<Sang-Seol LEE, Father of Korean Mathematics education>
http://www.youtube.com/watch?feature=player_embedded&v=NbuRcvLl]JOw

DE LA PAIX

Rédige par WILLIAM T. STEAD'

1 vausbetis de Ta e
[
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~ Inner product and Orthogonality

I
[ | o Reference videos: http://youtu.be/gb5dfkmITHE , http://youtu.be/CbfJYPCkbm8
@ Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—1—Sec—1—1.html

In this section, we will discuss the concepts of vector length, distance,

and how to calculate the angle between two vectors, as well as vector

parallelism and orthogonality in R".

Definition

Given a vector x= (z;, 7y, ...,z,) in R"

Ixll=/a?+al++a?

is called the norm (or length or magnitude) of x, and is denoted by
the symbol [x| or [|x]| (read as norm x).

In the above definition, Il x IIis the distance from the initial point of
the vector x to its terminal point; equivalently, it is the distance from
the origin to the point P(x,,x,, ...,x,). Therefore, for any two vectors

x=(z1, 29, v 2,), VY= W1 ¥os vy,) In R", lx—yl is the distance
between the two points P(z,,z,, ...,z,) and Q(y;, s, ...,y,). That is,

lx—y I = y/(z; =42+ (0 =y oot (2, —9,)°

. For the vectors x=(2,—-1,3,2), y=(3,2,1,—4) in R* we have the

following.

e http://matrix.skku.ac.kr/RPG_English/1-Bl-norm-distance.html

CPFED
Ixll=+v224+(—1)2+324+22= VA+1+9+4=32
Iyl =v32+224+12+(—4)?

= V9+4+1+16= /30
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lx—ylI=vVE=3P +(1-2P7+B—172+(2—(—4)’= V50
=5v2 . 0

Copy the following code into http://sage.skku.edu to practice.

x=vector([2, -1, 3, 2])
y=vector([3, 2, 1, -4])

print x.norm() # calculate the norm of x

print y.norm() # calculate the norm of y

print (x-y).norm() # calculate distance

3*sqrt(2) # sqrt(2) means /2

sqrt(30)

H*sqrt(2) [ |
Definition

For vectors x=(zy, 2y, ..;2,). ¥= (Y1;¥ss ... y,) In R",
Ty T Toyy Tt Y,
is called the dot product (or Euclidean inner product) of x and y

and is denoted by x - y. That is,
X - y=aw tagy, tetay,

e Note that x - x = lIlx?

_21_
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g Using the vectors x and y in , calculate x - .
X -

y=2:3+(=1)-2+3-1+2-(-4)=6—-2+3-8=—1. O

Copy the following code into http://sage.skku.edu to practice.

x=vector([2, -1, 3, 2])
y=vector([3, 2, 1, -4])
print x.inner_product(y) # find the dot product

-1 |

Theorem 1.2.1

If x, vy, z are vectors in R" and k is a scalar, then we have the

following:

M x - x =2 0,

2)x - x =0  x=0

B)x - y=y - x

4)x - y=x -z + vy - z

(5) (kx) -y =x - (ky) = kx - y)

The proof of all the facts in above theorem are easy and users are encouraged
to complete the same.

Theorem 1.2.2 [The Cauchy-Schwarz inequality]

For any two vectors x, y in R",
Ix -yl < Ixll lyl.

Equality holds if and only if x and y are scalar multiples of one
another (i.e. x=ky for some scalar k).

_22_
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The Cauchy-Schwarz inequality is one of the most important inequalities in
vector spaces. We will give a full details of this proof in section 9.2. This

lx -yl X -y
i lity impli —_— < 1 -1 £ —F7F7— <1 hich gi
inequality implies EIREL and TIREL and which gives
cosb = ﬁllyyl\ where cos@ €[—1,1]. This is a more generalized concept of

the angle between two vectors, since these vectors can be matrices, polynomials,

functions, etc.

Definition

For vectors x=(zy, 29, ....x,). Y= W1 Y9 ....u,) in R"

x - y=1Ilxll lyllcosf, 05 < m,

where 0 is called the angle between x and vy.

[Remark] Parallelism and Orthogonality

If x - y =0, then x is orthogonal to y.
If x is a scalar multiple of y (i.e., x=ky for some scalar k), then x is parallel
to y.

Definition
A vector u in R" with a norm of 1, that is,
lull =1

is called a unit vector. Additionally, if x and y are mutually

orthogonal unit vectors, x and y are called orthonormal vectors.

_23_
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Figure 7

. X X
If x is a non zero vector, then uzm, hence we have llull = H T H
hxI
I x|

For two vectors x=(1,0,1,1) and y=(—1,0,0,1) in R?*, establish
orthogonality.

e http://matrix.skku.ac.kr/RPG_English/1-TF-inner-product.html

x- y=1-(—=1)+0-0+1-0+1-1=0 ]

Copy the following code into http://sage.skku.edu to practice.

x=vector([1, 0, 1, 1])
y=vector([-1, 0, 0, 1])

print x.inner_product(y)

0  #orthogonal [ |
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Theorem 1.2.3 [Triangle Inequality for Vectors]

For any two vectors x, y in R". we have
lx+yll < x4+ Iyl

Equality holds if and only if x and y are non-negative scalar multiples
of one another (i.e. x = ky for some scalar k£ > 0).

Z=X+y

llzIl = [Pyl < [Ix[I+lyll

Figure 8

Geometrically, the sum of any length of any two sides of a triangle is greater than
or equal to the third side. Look at the above figure.

Using the vectors x and y from %6 1 , verify that the triangle

inequality holds.

x=(2,—-1,3,2), y=(3,2,1, —4), llxll=+vV4+1+9+4=+18=3V2,
lyll=+v9+4+1+16= /30 and

x+y=(2,—-1,3,2)+(3,2,1, —4)=(5,1,4, —2). Hence

I x+yl=+25+1+16+4= /46

So. llx+yll= V46 < V18 + V30 =lxll+yll. u
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Definition

For an arbitrary, non-zero vector x(# 0) € R"

is a unit vector. In R", unit vectors of the form
e, = (1,0,0,...,0), e, = (0,1,0,...,0), ..., e, =(0,0,0,...,1)

are called standard unit vectors or coordinate vectors.

If x=(z,, 2y, ..., ,) IS an arbitrary vector in R", using standard unit vectors,

we can express x as follows:
X= xlel + .’I;zez +"' + .'L'nen-

In R? and R?, conventionally, the unit vectors e,, e,, e; along the rectangular

coordinate axes are represented by i, j, k.

yT z
(0, 1) (0, 0, 1
" k
j j .,
- i - & AL ©, 1, 0)
(1, 0) '4 1, o, 0)

x=z,ita,j. x=(z,z,) € R?
x=z, i+t zyj a3k, x= (21, 79, 2;) € R?

Figure 9

<Figure 9 comes from Contemporary Linear algebra (3rd Edition) by Sang-Gu Lee,
ISBN 978-89-6105-195-8, Kyungmoon Books(2009)>
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1 3\ Equations of Lines and Planes
[ |

@ Reference video: http://youtu.be/4UGACWYWOQA http://youtu.be/YBI76T1wWOKE
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—1—Sec—1—3.html

In this section, we will derive vector equations of lines and planes in

R?, and we will examine shortest distance problems related to these
equations.

Point-Slope (Direction Vector) Equation of a Line

In R?, an equation of a line can be uniquely determined when a slope and a

specified point on the line are given. If a line passes through the point

Py(zy,yp 29) and is parallel to a vector v =ai+bj+ck, then the vector PP is

parallel to v, where P(x,y,z) is any point on the line.

That is, the line is a set of all points P(x, v, 2) that satisfies the following equation:

_—

PP =tv teR)

_—

Suppose OP, = p, and E’) =p. Then PP =p—p,. Hence we have p—p, = tv.

That is, p=1p, + tv.

e

Vector equations: p=p, +tv, (p= OP, p, = OP,)

Parametric equations: In terms of coordinates,

the above equations can be
written as
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x=xytta, y=y,+th, 2=z;+tc (—o0 <t< ).

Symmetric equations: From the above parametric equations, it is easy to see
that
r— Iy Y~ Y% 2T 2

p 5 - (a, b, cz 0).

Find vector, parametric and symmetric equations of the line that passes
through the point P(2,—1,3) and is parallel to the vector

v=1(-3,2,4).

(1) The vector equation of the line is give by
ri+yj +2k=2i—j +3k+ (—3i+2j +4k)t.

r=2—3t

(2) The parametric equation is given by {y = —14+2t (—o0 <t < o).
z =3+ 4t

(3) The symmetric equation is given by x__2 _ytl_ 23 ) |

3 2 4

w Find parametric equations for the line that passes through the points
P(1,1, —2) and Q4, —1, 0).

Two points P(1, 1, —2) and @4, —1, 0) with position vectors r,

and r, forms a vector
PQ=v=r,—r,=4-1, —1-1,0-(=2)=(3, —2, 2)
and the vector equation r =r,+t(r, —r,) can be written as

(xv Y, Z) = (1a 1a 72)+t(37 727 2)
= (1+3t 1—2¢t, —2+2t), teR).

Thus, the parametric equations are:

z=1+3t, y=1-2t, 2= —2+2t (—0 <t < o) .
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Point-Normal Equation of Planes

A plane in R? can be uniquely obtained by specifying a point P, (xz, y,, 2z,) in the
plane and a nonzero vector n = (a,b,c) that is perpendicular to the plane. The
vector n is called the normal vector to the plane. If P(xz,y,z) is any point in this

_—

plane, then the PyP=r—r, is orthogonal to n.

n
Hence by the property of the dot (inner) product.
n- POP:(aabaC)' (x_x()’y_y()”z_zo):() P
Py
From this, we have T
alz—zy)+bly—y,)+clz—2,)=0 Figure 10

where a, b and ¢ are not all zero.
This is called the point—normal equation of the plane through P, (z,, y,, 2,) with

normal n=(a,b,c). The above equation can  be  simplified to
ar+by+cz = axy+by,+czy (=d).

Vector Equation of Planes

Vector equations: A plane W in R?® can be uniquely obtained by passing

through a point x, =P, (zy, 9,.2,) and two nonzero vectors v, and v, in R? that

are not scalar multiples of one another.
Let x = P(z,y,2) be any point on W, Then x —x, can be expressed as a

linear combinations of v, and v,. Look at the Figure 11.

X — Xy = V] TtV or
X = X, + 4V, +tvy, (=00 <t t, < o)

where ¢, and t,, called parameters, are in R.

This is called a vector equation of the plane. Figure 11

Parametric equations: Let x=(z,y,z) be any point in the plane through
Xy = (¢, yo» 2¢) that is parallel to the vectors v, = (ay, b, ¢;) and v, = (ay, by, c,).

Then, we can express this in component form as

_29_



(.T, Y, Z) = (xoa Yos Zo) + t1(a17 bl, Cl)+t2 (azv bza CQ)

or

T =1zt a1t T ayty
y=yo+bity Thoty, (¢, t,ER)
z=zyt ety T eoty

These are called parametric equations of the plane.

Find vector and parametric equations of the plane that passes through
the three points: P(4,—3,1), Q(6,—4,7), and R(1,2,2).

e http://matrix.skku.ac.kr/RPG_English/1-BN-11.html

SR [ ot x = (x, v, 2), X, = (4, —3,1), X, = (6, —4, 7), and X, = (1,2,2).

Then we have two vectors that parallel to the plane as
X, —X,=PQ =(2, —1,6), x,—x, = PR =(-3,5,1).
Then, from our above definitions, we have

(z,y, 2)=x,+t,(2, —1,6)+t,(—3,5, 1),

which is a vector equation of the plane.
If we further simplify the above expression, we have

(w,y,2)= (4 +2t,—3ty, =3 —t, +5ty, 1 +6t,+1,).
In particular, © =4 +2t —3t,, y = —3 —t; +5t,, z =1+6t; +t,.

is the parametric equations of the plane. |
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[Remark] Computer Simulation (A plane containing three points)

e http://matrix.skku.ac.kr/2012-LAwithSage/interact/1/vec8.html

il B Y z

1L P Q B|

det 1 P Oy Ry =0
1 Py Q3 I

= —-8z+2y+22z+18=0

6.0

14,2.5)

(2,2,1)
(2,1,0)

0.0 3.0

3.0 5.0

Vector Projection and Components

Consider two vectors x and y with the same initial point O, represented by
x= 0@ and y= OP. Let S be the foot of the perpendicular from P to the line

containing OQ. Then OS is called the vector projection of y onto x and is
denoted by proj,y.

Here, the vector WZS—P) is called the component of y along x (or the scalar

projection of y onto x). Therefore, y can be written as y=p+w.

]

0 p=proigy 5 %

Note that p is parallel to x, hence p=+¢x for some scalar ¢t. Now y—p is
orthogonal to x. Hence x- (y—p)=0. This implies t=(x- y)/(x- x). This gives

the following results:
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[Remark] Computer Simulation (Projection)

e http://matrix.skku.ac.kr/2012-LAwithSage/interact/1/vec3.html

0.8
0.6 -
0.4

0.2

L ' L '
0.5 1 15 2

Theorem 1.3.1 [Projection]

For vectors x (# 0), y in R®, we have the following:

. (y- x)
(1) pProjyy = tx = ﬁ
_ -y x|
(2) D= ” pro]xy ” - ”X”

For vectors x=(2,—1,3), y=(4,—1,2), find proj,y (the vector projection

of y onto x) and the component of y along x.

Since y- x = 15, we have

.y x)_ 15 _(15 15 45
Projxy = = o X= &L= gy

v brojy= (4 —1,2)_ [1B, 15 45) (13 1 17T
W =y-projyy= (4, —1,2) (7’ 14’14) (7 147 14) -
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Copy the following code into http://sage.skku.edu to practice.

a=vector([2, -1, 3])
b=vector([4, -1, 2])
ab=a.inner_product(b)
aa=a.inner_product(a)
p=ab/aaxa;w=b-p
print "p=", p

print "w=", w

p= (15/7, -15/14, 45/14)
w= (13/7, 1/14, -17/14) |

Theorem 1.3.2 [Distance Between a Point and a Plane]

For a point P,(zyyy2,) and a plane 7w:ax+by+cz+d=0, the distance

D from the point to the plane is given by

ax,+ by, +czy+d
D_

vﬁ+#+g

pP=tn=proj v ;.
D= Ipll

w:ar+by+cz+d=0

Figure 12

Note that the distance of the point P, from the orthogonal projection of the vector
v= (20,99,2,) onto the plane ar+by+cz+d=0. This distance is same as the
orthogonal projection of the vector (z;,y,,z,) onto the normal vector n = (a,b,c)

to the plane. See the Figure 12. It is as easy exercise to verify that the orthogonal
projection of v onto n is given by the formula D above.
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m Find the distance D from the point P(3,—1,2) to the plane
z+3y—2z2—6=0.

e http://matrix.skku.ac.kr/RPG_English/1-B1l-point-plane-distance.html

p =proj,v=tn=

n
n
n-n

Here, n=1(1,3, —2),v=(3, —1, 2), and d=—6, so

3+3(1)-22)-6l_ 10 _2 ==

D=|lpll =llproj,vil= = =
! V124324 (—2)? Vid 7

Copy the following code into http://sage.skku.edu to practice.

n=vector([1, 3, -2])
v=vector([3, -1, 2]);d=-6
vn=v.inner_product(n)
nn=n.norm()
Dist=abs(vn+d)/nn

print Dist

5/7*sqrt(14)

f‘..-"'l-." 5 E ﬂ' LII ’.
%H“"}{f"'ﬁ: s ICM
. ¢ 2014

[2014 Seoul International Congress of Mathematicians] http://www.icm2014.org/Kkr
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e http://matrix.skku.ac.kr/LA-Lab/index.htm
e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

For points P, = (5, —2,1), P, =1(2,4,2), find the vector P,P,.

What is the initial point of the vector x= (1, 1, 3) with terminal point
B(—1, —1,2)?

For vectors u= (-3, 1, 2, 4, 4), v=(4,0, —8, 1, 2), and
w=(6, —1, —4, 3, —5), compute the following:

(2u— 7w) — (8v+u)
Using the same u, v, w from above, find the vector x that
satisfies the following:

20— V+xX=T7x+WwW

For vectors x=(—1, —2,3), y=(3, —2, —1) calculate cosf, where 0 is

the angle between x and vy.

(DY Find the distance between the two points P(—1,2,1) and
Q(—3, —4,5).
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For vectors x=(a,2, —1,a), y=(—a, —1, 3, 6), find the real number
that such that x- y=0.

() Find a vector equation of the line between the two points
P(—5,1,3), and Q(2, —3, 4).

Find a normal vector perpendicular to the plane z = —7x+ y+4.

[Projection] For x=(2, —1, 3) and y= (4, —1, 2), find the scalar projection and
vector projection of y onto X.

: . - X 15
Solution projy= y X = —(

1515 45
X X 14

EvERTY
15 15 45, (13 117,
7 147 14 7714’ 14

2,—1,3)=(

w=y —proj,y= (4, —1,2)—(

Sage

a=vector([2, -1, 3])

b=vector([4, -1, 2])

ab=a.inner_product(b)

aa=a.inner_product(a)

p=ab/aa*a:w=b-p

print "p=", p

print "w=", w

p= (15/7, -15/14, 45/14)

w= (13/7, 1/14, -17/14) |

[Discussion] Vectors with the same magnitude and direction are
considered to be equivalent. However, in a vector space, discuss the relationship

between vectors with the same slope but expressed with different equations.

2 1 2 1 2 2
[Discussion] For vectors VI:(_ 2 _2

3'3" 3 33" 3

if v, and v, are orthonormal vectors, and find a third vector v; such that

and v, = , check

Vy, V9, V5 are all orthonormal to one another.
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Ioll= 2 (D (2P =1, = (2 B+ (- 2=

3 3 3 3
VT Vo= %4_ %— %:0 => v; and vy are orthonormal.

2 1 2
Let vy=(a,b,c¢) such that vyl = Va> + 0>+ =1, v+ V3= —at—b+-c=0,

3 3 3
Vo V3—3a+3b 30—0. > a 3,b 3 € 3
~ (2 _2 1
This shows V3—(3, 3" 3) |

[Digital Library of Math Textbooks in 60’s at SKKU]
http://matrix.skku.ac.kr/2012-e-Books/index.htm
<1884~1910 Math books written by Korean authors>

http://www.hpm?2012.org/Proceeding/Exhibition/E2.pdf

HaEGEEiny <\

C & [ matrix.skku.ackr/2012-e-577 =
2 25 [ Facebook [ Google [H2] DE-Sage-Ch2-samp... »
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2.1 Linear system of equations
2.2 Gaussian elimination and Gauss-Jordan elimination

2.3 Exercise

A system of linear equations and its
solution is one of the most important
problems in Linear Algebra. A linear system
with thousands of variables occurs in
natural and social sciences, engineering, as
well as traffic problems, weather forecasting,
decision-making, etc. Even differential
equations concerning derivatives such as
velocity and acceleration can be solved by
transforming them into a linear system.

In Linear Algebra, a solution of a linear
system is obtained by Gauss elimination
method or with determinants. In Chapter 2,
we consider a geometric meaning of the
solution of a linear system and its solution,

and investigate some applications of a linear
system.
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e Reference video: http://youtu.be/CiLn1F2pmvY, http://youtu.be/AAUQvdiQ—ak
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—2—Sec—2—1.html

2 1 ™ Linear system of equations
[ |

[ The theory of linear systems is the basis and a fundamental part of
linear algebra, a subject which is used in most parts of modern
mathematics. Computational algorithms for finding the solutions are an

important part of numerical linear algebra, and play a prominent role in

engineering, physics, chemistry, computer science, and economics. In

this section, we study the process of finding solutions of linear system

of equations and its geometric meanings.

Definition [Linear equations]

Let b and ay, ay, ...,a, be real numbers. A linear equation with unknowns
Zys...,z, 1s of the following form:

ax; +ayxry+--+a,x, =0
In other words, a linear equation consists of variables of degree 1 and a
constant.

. Equations 2z, —3z,+1=x,, x,=2(v/5—z,)—x; can be written as

,—3x,=—1, 2z, +a,+x;=2v5 and they are linear. But

20, — 3%y = X1y Ty =34/ — 1, x; +sinz, =0 are not linear.

Definition [Linear system of equations]

In general, a set of m linear equations with unknowns =z, z,, ..., x,

a1, Fapxy +-t+ag,x, =0y

A1y + A9y +- + ay,w, = by

Q1T+ Aoy T+ ay,,z, =0,

is called a system of linear equations. If constants by, by, ..., b,are all

zeroes, it is called a homogeneous system of linear equations.
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Definition [Solutions of a linear system]

Suppose that unknowns =z, z,, ..., x, in a linear system are substituted

by sy, 89 ..., 8, Trespectively and each equation is satisfied. Then

S1s 895 ..., S, 18 called a solution of a linear system. For example, given a
linear system
4oy —x9+ 325 =—1
(2)
3z, txy+ 925 =—4
One can substitute =z, z4, x5 as 1,2, —1, respectively, and it satisfies
equation (2). Hence (1,2, —1) is a solution. In general, if there is a

solution of a linear system, it is called consistent and is called

inconsistent otherwise.

The set of all solutions of a linear system is called a solution set. Two linear

systems with the same solution set are called equivalent.

[Remark] Solution (linear system with two unknowns)

In general, a given linear system satisfies one and only of the following.
(1) a unique solution
(2) infinitely many solutions

(3) no solution

I1+x2:3 2$1 - Ty = -2 2./[/'1 - Ty = —2
— 2z, + xy = 2 — 2z, + =z,

|
W~

T, — Ty =1
o) X9 /
% /

X / €] £1 / 9] Xy

lz l] ll, 12 12 ll

_40_



[Remark] Computer simulation

[Linear system of equations] http://www.geogebratube.org/student/m9704

HE H7] MEME cFW

[R] o4 LA D@ O] &) [N frae] Lol
x-5

&

a=1 a=2 b|=3
a=1 am b=-5
Mx+(-2)y=(3) i

Mx+@)y=(-5)

@

-3 -2 -2 -1§ -18 -1T 16 -1 -14 -13 -12

fii=]
o

[Remark] Linear algebra with Geogebra-

%isev.-amn,,

Linear Algebra

http://www.geogebratube.org/student/b121550

el e e e e T T,

15 14 15 186 17 18 18 20

Remark: (i) If there is one linear equation in three variables then it has infinitely

many solutions. (ii) If there are two linear equations in three variables then, it

either it has no solution (when the two planes are parallel) or it has infinitely

many solutions which is the points of line of intersection of the two planes. (iii) In

case of three linear equations in three variables, all possibilities can occur.
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M Describe all possible solution sets in R® of a linear system with three
equations and three unknowns.

One can show that there are three possibilities by a geometric method.
Let us denote each equation by a plane H,, H,, H; respectively.

@ It has a unique solution.
Three planes meets in a unique point.
[Ex] o+ y+22=—3

z+2y+3z=—4

r+ y+3z=—

@ It has infinitely many solutions.
[Ex] (1) =+ y+ z=1 2) z+ y+ z2=1 3) z+ y+ z=1
20 +2y+ z=3 20+ 2y+22=2 20 +2y+22=2
r+2yt+2z2=4 20+ y+3z2=4 3x+3y+32=3

HI; HZJ H'}

® It has no solution. (It is called 'inconsistent').

[Ex] (1) 2 +y+2z=1 (2) z+y+z=1

z +z=1 rty+z=2

Y =3 2¢+y+z=3
3) z+y+z=1 (4 z+ y+ 2=1
ztytz=2 20+ 2y+22=2
rtyt+tz=3 20 +2y+22=3

H,
H.
=

e
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) Solve the following linear system.
Ty —2xyFtx3+3x,—x5=0

Tyt x5 =2

Since there are five unknowns and three equations, assign to the
any two unknowns arbitrary real numbers. Rearranging each equation,
we get
)ty +3xy =2z x4
T3 —dxy =1—2x,

Ty =2— x5

Substitute z, =s, xz; =t (s, t are arbitrary real numbers) to get
Ty =2—z5=2—1
r3=1—2z;+52,=1—-2t+52—t) =11—-7t
Ty = 2xytay—x3—3x,=2s +t —(11—-7t) —3(2—1)

= —17+2s+11¢

Therefore, the solution of a given linear system is
T, =—17+2s+11¢, zy=s, z3=11—7t, x,=2—1t, z5=1

(s, t are arbitrary real numbers).
The solution set is

S={(z, 29,25 v x5) = (—17+2s+ 118, 5,11 -7t,2— ¢, t) | s,tER }.

Thus this system has infinitely many solutions. |
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Definition [Matrix]

An array (or rectangle) consisting of real (or complex) numbers is called

a matrix, and each number is called an entry.

Ay Qg vt gy
Ao | 0 A, )
A1 Q2 Amp
The row [a;; a; -+ - a,)(1< i< m) of matrix A is called the i-th
row of A4, and the column
ay;
“il (1< j< n)
O j

of A is called the j-th column of A. A matrix with m rows and n
columns is called a size m Xn matrix, and if m =n, it is called a square
matrix of order n.

Let A denote the ith row of A4, and A9 denote the jthe column of A.
Therefore we can write A4 as follows.

The entry a;; of a matrix 4 is also called the (i, j) entry of A, and the entries
a1, G99, ..., G,, Of a matrix of order n are called main diagonal entries. Matrix (2)
can be written as the (i, j) entries as follows.

A= [ai]‘ ]

or A= [a;]

m Xn

Consider matrices

A:[1 2 —1]’ 32[1—2}’

2 3 0 4 -3
1 1 1-3

c=1|-1|, D=2 o 1|, E=[2], F=[-1 0 3].
3 5—1 2

- 44 -



A 1s a 2X3 matrix, and a;3=—1, a5y, =3. B 1s a 2X2 matrix, and

bjy=1, by=—3, and C, D, E, F are 3X1, 3x3, 1x1, 1xX3 matrix

respectively. The main diagonal entries of D are dj; =1, dyy, =0, ds3 =2,

and F is also written as E=1[2]=2. [ |

Definition [Coefficient matrix and augmented matrix of a linear system]

For a linear system with n unknowns and m linear equations

ay @y tapry o taz, = b

(91T + Qoo+ + a9, T, = by (3)

A1y + A 2Lg +et ATy = bm ’

let
app Qg - Qg Ty by
A= |02 Gz G| T2y D
A1 Ay o0 A Ty bm

then Equation (3) can be written as

Ax=Db.

The matrix A4 is called the coefficient matrix of Equation (3) and the
matrix obtained from A4 and b

ay apy - Gy, L by

[A4: b]= Qg gy -+ Gy, 1 by

A1 Qg v Ay

is called the augmented matrix of Equation (3).

Find the augmented matrix of the following linear system of equations.
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r+ y+2z=9
20 +4y—32=1
3r+6y—5z2=0

Sl et A4 be the coefficient matrix, x the unknown, and b the

constant, then

11 2 x 9
A=12 4 -3, x= v, b=|1
36 —5 z 0
Hence we have
11 2 x 9
Ax=b & |24 =3||y|=]1
36 —5]lz 0
Its augmented matrix is
11 2 : 9
A b]=1]24 -3 1
36 —5: 0

U

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(3, 3, [1,1,2,2,4,-3,3,6,-5]) # 3x3 matrix
b=vector([9,1,0]) # constant vector

print A.augment(b,subdivide=True) # augmented matrix

[1 1 2] 9]

[2 4-3] 1]

[3 6 5] 0] [ |
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"\, Gaussian elimination and Gauss-Jordan elimination
I
| e Reference video: http://youtu.be/inC66zvaHJI, http://youtu.be/HSm6E9YigRr4
e Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—2—Sec—2—2.html

Gaussian elimination (also known as row reduction) is an algorithm for

solving systems of linear equations. It is usually understood as a
sequence of operations performed on the associated matrix of

coefficients. Using row operations to convert a matrix into reduced row

echelon form is sometimes called Gauss—Jordan elimination. Linear

system of equations can be easily solved by using Gauss-Jordan

elimination.

Solving a linear system: using elimination method:

20+ 3y=1 s . 20 +3y=1
{ vy =4 = Multiplying 2 on the second equation, {2m—4y=8
. . . . 2¢+3y= 1
= Subtracting the second equation from the first equation, Ty=—1
= Dividing the second equation by 7, {23:4—3@; zii
s . . . . 20= 4 z= 2
= Substituting y=—1 in the first equation, y=—1 = y——1
The following operations do not change the solution set.
(1) Exchange two equations. R, & R;
(2) Multiply a row by a nonzero real number. kR,
(3) Add a nonzero multiple of a row to another row. kR, + R~ R;

These are called Elementary Row Operations (ERO).

In the following procedure, the left side shows solving a linear system

directly, and the right side shows solving it using an augmented matrix.

z + y+2:=9 11 2: 9
2z +4y—3z =1 24-3: 1
36-5: 0

3x+6y—52=0

Add the multiplication of the first equation by —2 to the second

equation.
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z+ y+2z= 9 (—2)R, + R, 1
20— Tz2=—17 g
3r+6y—5z= 0

1 2: 9
2 =71 —17

6 —5: 0

Add the multiplication of the first equation by -3 to the third equation.

z+ y+2z= 9 (—3)R1+R3 1
20— Tz=—17 0
3y—11z=—27 0

Multiply the second equation by 1/2 to get

= 1 1

z+yt+2z=9 ERQ
PR U 0
2 2 0

Add the multiplication of the second equation

equation.

z+y +22=9 1
T 1T (=3)R,+ Ry 0
Y797 ’
1 3 0

277

Multiply the third equation by —2.

zty+2z = 9 1
LT, (2R
YT 9ET T
z= 3 0

Thus the system reduces to z=3
_T, AT
Y795

r=9—y—2z=1

1 2: 9
2 =7 —17
3 —11: —27
1 2 9
7. 17
L 2 2
3 —11: —27

1 2: 9
1-4 -4
0-2: -3
1 2: 9
-1 -4
0 1: 3

Now substituting =3 in the second equation, we get y = 2. Substituting

y=2 and z=3 in the first equation, we get = =1. Hence the solution is

r=1,y=2, 2=3.
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Definition [Row echelon form(REF) and reduced row echelon form(RREF)]

When an m Xn matrix F satisfies the following 3 properties, it is called

a row echelon form (REF).

(1) If there is a row consisting of only 0's, it is placed on the bottom

position.

(2) The first nonzero entry appearing in each row is 1. This 1 is called
a leading entry.

(3) If there is a leading entry in both the ith row and the (i+1) row,
the leading entry in the (i+1)th row is placed on the right of the
leading entry in the ith row.

If matrix £ is a REF and satisfies the following property, £ is called

a reduced row echelon form (RREF).
(4) If a column contains the leading entry of some row, then all the
other entries of that column are 0

) The following are all REF.

=T s St
5 00 01 3 00
0 IR | 0 1 2 .
0 0By 00 1 00 000 00
00 00O
Consider matrices
1 -2 5 4 1 -3 -3 —14 L U -3 —4
A=o_0 0 0. B=|o [2]-1 5| :?
0 0 1-—-3 0 0 1 2 2
0 0 0 0
Since matrices A4, B, C do not satisfy the above properties (1), (2), (3)
respectively, they are not REF.
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The following are all RREF.
5 r 00 3] [ il |6 B

= 00 0
010 5 [}10-.[000},

0 01 2 0 0 1

o OO O
o OO
o O O
o O = O
o O W=

[Remark]
Below are a general form of a REF and its corresponding RREF(here * is any
number).
1 % k% 1 % * %] [ * % % 01 vk s o e s
% % 1 % % % % 0001° S

0 01 01 000 0 1 * % % * %

001 * 001 * 0000 00000 1 * * * =

0 0 1 0000 [O0O0O 000000001 *%

¥ ¥ K *

N Y 0 e e ) |t * 0 & - il % % ¢ -

) . S 000 100 0

0 He 0 e 0 Bl pay D gy = = £ % '

. » 0000 1O0 0

0O 010 001 = 00 0 0 000001 %** *

00 01 0000, OO 0 0O 00000000 1%

Definition [Elementary Row Operation(ERO)]

Given an m Xn matrix 4, the following operations are called elementary

row operation (ERO).
El: Exchange the ith row and the jth row of 4. R, < R,

E2: Multiply the ith row of 4 by a nonzero constant k. kR;
E3: Add the multiplication of the ith row of A by k& to the jth row.
kR, + R;

EROs transform a given matrix into REF and RREF.
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Definition [Row Equivalent]

If B is obtained from a matrix A by elementary row operations, 4 and
B are row equivalent.

The following are equivalent.

T I e e P P P

Finding REF and RREF

00 —20 7 12
24-106 12 28
24 —-56—-5-—-1

For A= , find REF and RREF by applying ERO's.

(

Find a column whose
M entries are not all zero and ilo -2 0 7 12
. which is located in { 214 —10 6 12 28]

& left—most position. 214 -5 6 =5 -1

(In this case, it is the first column)

Swap the first row with some
other row below to guarantee

!‘ =) that a;; is not zero.
g =]

0 -2 0 7 12
24 —5 B —5 —1

\24—106 12 28}

Swap 1st and 2nd row

(In this case, @y, = 2 became a;; . This ay; = 2 is call a pivot.)

M Divide the 1st row by 2 to make the T2 =53 & W
- pivot entry = 1. { 00 —2 0 7 12?
Step 8 2 4 _5 6 _5 _1

1
Multiply 5 to the 1st row.
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Eliminate all other entries in the 1st

column by subtracting  suitable
@ multiples of the 1st row from the 112 —=5 3 & 14
v other rows. 0fo —20 7 12
o (Use elementary row operations). 0j0 5 0 —17 —28

Eliminate a3 = 2 in the 1st column by subtracting —2 multiple of the 1st row from the 3rd row.

Find a column whose entries are not all zero and

which is located in the left—most position (excluding the 1st column).

12=53 6 14
bo 1 0 =% =86
00 5 0 =17 =29 Since the leading entry is not 1, follow step 3.
T12-5|3 6 14
i _
00 110 5 6
1
| 00 0]0 9 1 Eliminate a33” =5 in the 3rd column by subtracting —

5 multiple of the 2nd row from the 3rd row.

12-53 6
00 1 0+

00 0 O

Find a column whose entries are not all zero (excludin

g the 1st and 2nd rows).
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12-53 6 1
00 1 o—%—
00 0 0 1 9

Since there is a row whose entries are not all zero, f

ollow step 3.

Therefore we have REF of A as follows.

12 —-53 6 14
7

1 -—= -

00 0 9 6

0o 0 0 1 2

Furthermore, we get the RREF of A from the above REF by making nonzer
0 a;’to be 1 by suitable multiples of each row.

12 -53614
0o 1 00 1 7
00 0 01 2 Add the 5 multiple of 3rd row to 2nd row.
[12 =530 2)
00 1 001
00 0 012 Add the —6 multiple of 3rd row to 1st row.
(120307
\ 001001
000012 Add the 5 multiple of 3rd row to 1lst row.
Now we have the RREF of 4.
120307
001001 ]
000012

http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=rref
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Find the RREF of A.

EEEE
T
1 11 4 4 1
A=234916] (=]
—203 -7 11

http://matrix.skku.ac.kr/RPG_English/2-MA-RREF .html
http://matrix.skku.ac.kr/2014-Album/MC.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(3, 5, [1,1,1,4,4,2,3,4,9,16,-2,0,3,-7,11]) # 3x5 matrix input
print A.rref() # A's RREF

[1 0 0 2 -1]

[0 1 0 3 2]

[0 O 1 -1 3] [ |

Theorem 2.2.1

Two linear systems whose augmented matrices are row equivalent are
equivalent (that is, they have the same solution sets.)

Gauss elimination: This is a method to transform the augmented matrix of a
linear system into REF.

=

Solve the following by the Gauss elimination.

r+2y+3z = 9
20 —y +z = 8
3z —z = 3
1 2 3¢ 9
Its augmented matrix is |2 —1 1: 8| and its REF by EROs is
3 0—-1: 3
1 2 3 9
0 1 1 : 2|. Therefore, since the corresponding linear system of the
0 01 : 3

above augmented matrix is

_54_


http://matrix.skku.ac.kr/RPG_English/2-MA-RREF.html
http://matrix.skku.ac.kr/2014-Album/MC.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080

y+z=2

rz+2y+32=9 T =
le { =
z=3

The solution is z=2, y=—1, z2=3. [ |

Gauss-Jordan elimination: This is a method to transform the augmented matrix

of a linear system into RREF.

. Solve the following system using the Gauss-Jordan elimination.

T+ 3y — 2, +2x, = 0
20, +6xy,—dry— 2o, +4x;— 3xy=—1
bry + 10z, +1bxs= 5

20, +6x, + 8x, +4w; +18x5= 6

We will use Sage to solve this. U
e http://matrix.skku.ac.kr/RPG_English/2-VT-Gauss-Jordan.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix([[1,3,-2.,0,2,0].[2,6,-5,-2,4,-3],[0,0,5,10,0,15], [2.6,0,8.,4,18]])
b=vector([0,-1,5,6])

ENEE
print A.augment(b).rref() L
= i
[ 1 3 0 4 2 0 0
[ O 0 1T 2 0 0 0
[ O 0 0 0 O 1 1/3]
[ O 0 0 0 0 0 o0

Its corresponding linear system is

x, + 3x, +4z,+ 225 =0
x3+ 23y =0

1

2176 —g

By letting =z, =r, z, =s, x; =t(r, s, t are any real), its solution is

9
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v, =—3r—4s—2t, xy=7, x3=—2s, x,=s, 3=t x,=1/3. M

Example .
Q From , we can express a general solution as a vector form.

(r, s, tER)

1 _37'_;13_2’5 8W —3r] [—4s| [—2t 8 ~3 —4] [-2
Ty o 0 r 0 0 0 1 0 0
X — _

’l= 5 —o|+| Q|72+ Q= o]+ Q|5+t 0
Ty ¢ 0 0 ] 0 0 0 1 0
s L . 0 0 t . 0 0 1
) 3 §j 0 0 0 3 0 0 0

[Remark] Gauss elimination and Gauss-Jordan elimination
ERO ERO
A » REF(A) » RREF (A)

Gauss Elimination

Gauss-Jordan Elimination
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[Remark] Leading Variable, Free Variable and their Relation to RREF

® a free variable: a variable corresponding to the column not containing a
leading entry in RREF
® a leading (pivot) variable: a variable corresponding to the column containing

a leading entry in RREF

130420 0
0 0‘1_;.’2‘.:0‘:0 :

0.0 0 0N\
L 000000%\0

Leading Variable Free Variable

Homogeneous linear system

1T, T a9y T+ ay,x, =0

(91X1 T Aoy T+ ag,x, =0 (1)

A1 + () +e +amn‘rn = O

It is easy to see that x=0= (0,0, .. ,0) is always a solution of a homogeneous
system (II). x=0 is called a trivial solution. Also if x is a solution of (II) then any
scalar multiple ¢x =0 is also a solution of (II). Similarly if x and y are two
solutions of a homogeneous system, so is their sum. This shows that any

homogeneous system has either a trivial solution or infinitely many solutions.

/ Using the Gauss-Jordan elimination, express the solution of the following

homogeneous equation as a vector form.

T, + 3z, — 224 + 24 =0
2z, + 6z — dx3— 224 +4a5— 3345 =0

o9x3 4 10z, + 15z4=0
2z, + 6z, + 8z4 +4x5+ 18z5=0
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13-2 02 0: O
Its augmented matrix is (2) 8_2_13 3_1:; 8 . and its RREF is
26 0 8418 : 0
130420 0
88(1)88? 8 Thus, leading entry 1's correspond to leading
000000 0

variables z,, z;, x; and the rest variables z,, z,, z; to free variables.

We have the following.

Ty =— 3Ty — 4z — 225, T3 ="21y, T5=0

Now let free variables be z,=r, z,=s, x5 =1, then

Ty =—3r—4s—2t, xy =71, T3 =—28, v, =8, r5=1t, r5=0.
CHor=3] [—4] [-2
Lo 1 0 0
T —
Therefore =1 0 +s 2 +t 0 [ |

Ty 0 1 0
T 0 0 1
EN 0 0 0

Theorem 2.2.2 [No. of free variables in a homogeneous linear system]

In a homogeneous linear system with n unknowns, if the RREF of the
augmented matrix has k leading 1's, the solution set has n— k free

variables.

Theorem 2.2.3

The system Ea

Jj=1

;7; =0 for 1 < ¢ < m always has a non-trivial solution if

m<n.

The theorem can be proved using induction on the number on variables.
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[Remark]  Computer simulation

[Elementary row operation]
http://www.geogebratube.org/student/b73259#material /28831

Rowl[2]=(-0.5) Rowl[2]+(0) Row(1] =
1T 1 11 2 11 a1 2 =1
0 0D 0 -2-2 2 o0 0 1 1 -1
0 8 0 7 7 -7 89 8 7 & =7
e & 1 1 1 1 g 8 1 1 1A
- End:s
Enter A={1.1.-1,1.2,-1%.{2.2.2,0. 2, 05, {-1.-1,-3, 2, 1.-10% {0, 0.1, 1, 1, 1}}
Set the operations in the four righthand columns—
A B & DiE E =
1 H1,1,0.1,2,-1542.2.-2.0, 2.0} £ { a i B |3
2 {1.1,-1,1,2,-1}%40,0,0,-2,-2, 2}, {- 1 |2 P
3 {{1,1,-1,1,2,-1},{0,0.0,-2,-2, 2}, {0 1 |3 I
4 {{1,1,-1,1,2.-1},{0.0,0.-2.-2. 2}. {Q 1 (8 DaEas
5 {1.1.-1.1.2.-1}%{0.0.0.1.1.-1% {0 0.5 2 B
6 {1.1.-1.1,2,-1}%4{0.0,0. 1. 1,-1}% {0 1 3 =F 2y
7 {(1.1.-1.0.1.08%L{0. 0. 0. 1. 1.1} {0. 1 [
8 {{1,1,-1,0.1,0%40.0.0.1, 1.-1%L {0, 1 | =i ()
9 {{1.1,0.0.1.2%{0.0,0.1.1,-1} {0. ( 1 |® BN ES
10 $41.1.0.0.1. 2440, 0. 0.1, 1. -1% {0, (RGW 1 IGOSHANE

-

M{
Linear Algebra with Sage

i_ $ e all{

-]

SAGE o QmidtE
B4CH M BICHS O
= .0 "

g B

Copyrights © 2010. Made by sglee@skku.edu, All rights reserevd. Last modifie

[Linear algebra with Sage, Smartphone App]

https://play.google.com/store/apps/details?id=la.sage
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Chapter 2

e http://matrix.skku.ac.kr/LA-Lab/index.htm
e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

Answer the questions for the following linear system.

T, T3y —z3 =1
2z, +5xy+x3 =5
T+ Tyt =3

(1) Find the coefficient matrix.
(2) Express the linear system in the form Ax=b.

(3) Find its augmented matrix.

Find a linear system with its augmented matrix.

(Put the unknowns as zy, -, x,.)
1 1 3 —3: 0
0 2 1 —3: 3
1 0 2 —1: —1

Find the number of leading variables and free variables in the solution
set of the following system.

2xy +4xy —6x, — 625 =2

{x1+4x2+5w3—9x4— Trs=1
— bz, =3
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[ ICEEEWY Which matrices are REF or RREF? If one is not RREF,

RREF.

12—-1-2 010 05
02—-2—-3|,1001 0 4].
00 0 2 010—-23

Solve the system using Gauss elimination.

22 +y +z—2w=1
3x—2y +z—6w=—2
r ty —z —w=—1
5 —y+2z—8w=3

Solve the system using Gauss-Jordan elimination.

r+2y—3z=4

r+3y +z=11
2+ 5y—42=13
2x+ 6y + 2z =22

transform it to

In the following circuit, write a linear system to find current 7.

100 Vi, i
1 +
oov( ) v nETHQ V60
ti,
Let  dg=4, =0, 4g=iy—i3 =0, i, +3i, =9, 4, =253 =0 .
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1—-10 0 () 0
_ 10 —-1—-1 |4 _ o

Then Ax=b where 4= 01 3 ol X= i, and b= ik [ |
00 1 —2 is 0

In general, we are given a linear system with m equations and n

unknowns.

a117, + a9xy +-Fay, T, =0

Q1T + Aoyt +ag,x, =,

amlxl+am2x2+“'+a’ =b

mn T n m

If there are k free variables, what is the number of leading variables?
From this, think about the relation among the numbers of free variables, leading

variables, and unknowns.

Write a linear system with 4 unknowns and 3 equations whose solution

set is given below.

1 1 -2 -3
T2 _ |0 1 0
| |1 ts| g [T o (here s, t are any real)
T, 0 0 1
The linear system x;+2z,+3xz,—1=0 is an example. |

r3—2x,—1=0
r,+2zy—23+52, =0

Suppose that three points (1,4), (—1,6), (2,9) pass through the

parabola az®+bz+c= y. By plugging in these points, obtain three
linear equations. Find coefficients a, b, ¢ by solving Ax=b.

Write a linear system with four unknowns and four equations satisfying
each condition below.

(a) A solution set with one unknown.

(b) A solution set with two unknowns.
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3.1 Matrix operation

3.2 Inverse matrix

3.3 Elementary matrix

3.4 Subsapce and linear independence

3.5 Solution set of a linear system and matrix
3.6 Special matrices

x3.7 LU-decomposition

Matrix is widely used as a tool to transmit digital sounds and images through
internet as well as solving linear systems. We define the addition and product of
two matrices. These operations are tools to solve various linear systems. Matrix
product also becomes an excellent tool in dealing with function composition.

In the previous chapter, we have found the solution set wusing the Gauss
elimination method. In this chapter, we define the addition and scalar
multiplication of matrices and introduce algebraic properties of matrix operations.
Then using the Gauss elimination, we show how to find the inverse matrix.

Furthermore, we investigate the concepts such as linearly independence and
subspace which are necessary in understanding the structure of a linear system.
Then we describe the relation between solution set and matrix, and special
matrices.
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~ Matrix operation
|
| e Reference video: http://youtu.be/DmtMVQR7cwA, http://youtu.be/JANNHGAJBrQ

@ ractice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—3—Sec—3—1.html

L1 [=] This chapter introduces the definition of the addition and scalar
E—_ multiplication of matrices and the algebraic properties of the matrix
operations. Although many of the properties are identical to those of

the operations on real numbers, some properties are different. Matrix
operation is a generalization of the operation on real numbers.

Definition [Equality of Matrices]

Two matrices 4 = [a and B=[b,] of same size are equal if

ij]an mXn

a;; = b;; for all i, j, and denote it by 4= B.

o To define equal matrices, the size of two matrices should be the same.

For what values of =z, y, z, w the two matrices

1 2 w 1 2 —1
A=12 —3 4|, B=1|2 =z 4
0 —4 5 y —4 z

are equal?

For A= B, each entry should be equal. Thus (that is, a;=10;)

)

w=—1, z=—3, y=0, z=5. |

Definition [Addition and scalar multiplication of matrix]

Given two matrices 4 = [a;],, ., and B=[b;l,, ., and a real number £,

the sum A+ B of 4 and B, and the scalar multiple k4 of A by k are
defined by

A+ B= [a’ij+bij]m><n’ kA = [kaij]an-
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o To define addition, the size of two matrices should be the same.

-2 1 3 -131 2 2
(—1)C?

Solution A+B:{ 1+0 2+1 —4+4]:[ 13 o]’

—2—1 143 3+1 -3 4 4
QA:[Q_Q(._IQ) g? 2.2(._34)]:[—?1 ;l _2]
Coe=[ 20 T =128 28 .

e http://matrix.skku.ac.kr/RPG_English/3-MA-operation.html
e http://matrix.skku.ac.kr/RPG_English/3-MA-operation-1.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ,[[1,2,-4], [-2,1,3]])
B=matrix(QQ,[[0,1,4], [-1,3,1]])
C=matrix(QQ,[[1,1].[2,2]])

print A+B # matrix addition

print

print 2*A # scalar multiplication

print

print (-1)*C # scalar multiplication

[ 1 3 0] [ 2 4 -8] [-1 -1]

[-3 4 4] (-4 2 6] [-2 —2] |
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Definition [Matrix product]

Given two matrices 4 =[a and B=1[b the product AB of A

ij]'m><p ij]an’

and B is defined below.

AB= [Cij Ln,xn'

p
where c¢;; = a;by; +a;gby; ++ab,; = kE a;,by; (1<i<m, 1< j< n).
=1

For two matrices 4 and B to be compatible for multiplication, we require the
number of columns of 4 to be equal to the number of rows of B. The resultant

matrix 4B is of size number of rows of 4 by the number of columns of B.

[Remark]

A X/))Ij PXn) G
 I—

Determining the size of the matrix product

[Remark] Meaning of matrix product

Let 4=la;l,, «,, B=Ib;l,.,. and denote the ith row of A4 by A, and the jth
column of 4 by AY) . Then

A Ay BY 4B - 4B
c =ap = |00 e . go]=| :
: (1) (n)
A(m) A(m)B A(m)B mXn
by; p
Thus, Cvﬁj:A(i)B(]): [ -+ a)] b :ai1b1j+ai2b2j+"'+aipbm:kzlaikbkj
i "

Note that the inner product of ith row vector of A4 and the jth column vector
of B is the (i,j) entry of AB.

[ Gyy Gyg o Gy |
.11 .1" .lp by by

i} b
boy «++|bos b+ bo,,

<J

AB= |ai1 Qg -+~ aipl

b

pn

b,

pj

_aml L R mpJ
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w -2 1
1 2—1
Le‘[AZ{3 1 0],B= g—il’y.Then
-2 1
1 2—1
AB = 0—3
eyl d
:{(1)(72)+(2)(0)+(71)(2) (D@)+2)(=3)+(=1)(1) ]:[*4*6] O
(3)(=2)+@)(0)+(0)2) )@)+(1)(=3)+(0)(1) -6 0

e http://matrix.skku.ac.kr/RPG_English/3-MA-operation-1-multiply.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ,[[1,2,-1], [3,1,0]])
B=matrix(QQ,[[-2,1], [0,-3], [2.1]])
print A*B # Don't forget to include (*)!

[-4 -6]
[-6 0] [ ]

Q Using matrix product, one can express a linear system easily. Let us consider
the following linear system

a17, + a2y +- +ag, T, = b,

a21$1 + a22$2 +"' +a2n$n = b2
G171+ QpoTy T+ ap,, T, = b

mn=mn m

Ty by
b

and let A=la;l, ., x= :xz , b=1.”| be the coefficient matrix, the unknown
x b

n m

vector and the constant vector respectively. Then we can express the linear
system as

Ax =D =3 zlA(1)+x2A<2)+...+an("):b
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Theorem 3.1.1

Let A, B, C be matrices of proper sizes (oeprations are well defined) and

let a, b be scalars. Then the following hold.

1
2

A+B=B+ A4 (
A+ (

3) A(BC)=(4AB)C (associative law of multiplication)
A (
(

(B+O)=(A+B)+C

commutative law of addition)
associative law of addition)

(1)

(2)

(3)

(4) A(B+C)=AB+AC distributive law)
(5) (B+0)A=BA+CA distributive law)
(6) a(B+ C)=aB+aC

(7) (a+b)C=aC+bC

(8) (ab)C=a(bO)

(9)

9) a(B ) (aB)C= B(aC)
The proof of the above facts are easy and readers are encouraged to prove them.

Check the associative law of the matrix product.

1 2
A=3 4,1}3=[‘2l ﬂ Cz[; g]
01
1 2 43 8 5
BN Since AB= |3 4 [2 1] 20 13|, we have
01 2 1
8 5 10 18 15
(AB)C= (20 13 [2 3]: 46 39
2 1 4 3
. [43][10]_T]109
Since BC—[21H23]—[43],wehave
1 2 10 9 18 15
ABC)=13 4 [4 ] 46 39|. Hence, (AB)C= A(BC). [ |
01 314 3

The properties of operations on matrices are similar to those of operations on
real numbers which are well known,

Exception: For matrices A, B, we do not have AB= BA in general.
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Suppose that we are given the following matrices 4, B, C, D, F.

10 1 0 1 0

A:[_52 _23?1], B=l0o2 2 2|, c=|2 —3|,
30 —13 2 1

=10 12

07[2 3]’E*{3 0]'

Then AR is defined but BA is not defined. Similarly AC is a 2x2
matrix but CA is a 3X3 matrix, and hence AC# CA. Also although
DFE and ED are 2Xx2 matrices, as we can see below, we have DE#

ED.

-1 -2

1 4 -3 0

DE= [

o] 24

[Remark] Computer simulation

[matrix product] (Commutative law does not hold.)
http://www.geogebratube.org/student/m12831

By ¥ d94n sag

-~ A Matrizproduct AB X
B Matrixproduct BA x
) Y 4
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Definition [Zero matrix]

A zero matrix consists of entries of 0's and denoted by O(

ool

or O,

m><n)-

0
000
ooo}, [0000], 01 [o] -
000

Theorem 3.1.2

For any matrix 4 and a zero matrix O of a proper size, the following hold.
(1) A+0=0+4=4

(2) A—A=0
(3 O—A=—4
(4) AO=04=0

Note: Although AB= O, it is possible to have 4# O, B# O. Similarly,
although AB=AC, A# O, it is possible to have B# C.

o1l . [11] . [25] . [37 [34]
LetA_[o 2]’ B_[s 4]’ C_[3 4]’D_[0 0]'The“ AB_[G 8]_AC

But A# O and B# C. Also AD=0O but A# O, D# O. [ |

We should first define scalar matrices.

Definition [Identity matrix]

A scalar matrix of order n with diagonal entries all 1's is called an

identity matrix of order n and is denoted by Z,. That is,

10 - 0
I, = :O :1 :O
00 - 1

nxXn

Let A4 be an m xXn matrix and the identity matrix 7,, ,. It is easy to see that

[NlA = A - A[H *
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m _[4—23 C[ro0][4 -2 3] [4-2 3]_
Let A= [5 0 2]' Then 4= [0 1] [5 0 2]‘ [5 0 2]_‘4
100
4-2 3 4-2 3
ar = | [o 1 0|=| |-
5 0 2 00 1 5 0 2
http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
A=matrix(QQ.[[4,-2,3]. [5,0,2]])
[2=identity_matrix(2) # identity matrix identity_matrix(n), n is the order
[3=identity_matrix(3)
02=zero_matrix(3, 2) # zero matrix zero_matrix(m, n), m, n are the order
print I2*A
print
print AxI3
print
print A*O2
[ 4 -2 3]
[5 0 2]
[ 4 -2 3]
[5 0 2]
[0 O]
[0 0] |
Definition

Let A be a square matrix of order n. The kth power of A is defined
by
A'=1, A¥=AA-- A(k times)

n

Theorem 3.1.3

If A is a square matrix and r, s are non negative integers, then

Ar s:Ar+s’ (AT)S:ATS.
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Let A= [4_2]. Find 42, A% A° and confirm that (42)° = 46,

@

For a matrix A = [a

5 0
http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ,[[4,-2], [5,0]])

print A*2 # Works only for a square matrix

print

print A”3 # same format as power of real numbers
print

print A”0 # When the exponent is 0, get identity matrix
print

(A”2)"3==A"6 # check the power rule

[ 6 -8
[ 20 -10]

[-16 -12]
[ 30 -40]

(1 0]
[0 1]

True u

the set of real numbers, we have (a+b)?=da’>+ab+ba+td’

=a’+tab+ab+b> =a’+2ab+b°. However, the commutative law under matrix

product does not work and thus we only have the following.

(A+B)?*= A+ AB+ BA+ B*.

When AB= BA, we have (A+ B)?> = A*+24B+ B>,

Definition |[Transpose matrix|

the transpose of A is denoted byA “and defined by

ij ]an>

ATZ[aij' |- aij'Zaji (1< i< n, 1< j< m).

o The transpose A7 of A is obtained by interchanging the rows and columns of

A.
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Find the transpose of the following matrices.

Lo s 1 24 5 4 9
A:[4 5 J’B: 3—-1 2|, C=|=-32, D=[301], E=| 0
0 5 3 2 1 —3
14 1 3 0
AT=|-2 5], B"=|2 -1 5,0T=[5_3 2},
3 0 4 2 3 421
3
D= o], £T=12 0 —3]. O
1

http://sage.skku.edu T+ http://mathlab.knou.ac.kr:8080

A=matrix(QQ,[[1,-2,3], [4,5,0]])
C=matrix(QQ,[[5.,4], [-3.2], [2,1]])

D=matrix(QQ, [[3,0,1]])
print A.transpose()
print

print C.transpose()
print

print D.transpose()

# Transpose of a matrix A.transpose()

[ 1 4]
(-2 3]
[ 3 0]

Theorem 3.1.4

[5-3 2]
1]

(3]
[0]
[1]

Let A, B be matrices of appropriate sizes and k a scalar. The following

hold.
(1) A4N)"=
(2) A+B)"
(3) (AB)”

(4) (k4)”

A
=AT+ BT
BTAT
kAT
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=10

Let A= {1 3}, B= [1 1 3]. Show that (3) of Theorem 3.1.4 is true.

2 5 21 4
7 12
: . 1 3][113 7 4 15 r
Solution — _ _
since an=[1 3| [L 1 3= [7 4 15] (4 [ 7 ]
15 26
12 19 7 12
Also, BTAT= |11 [3 5]= 4 7|. Thus UB)T=BT4T. [ |
34 1526

Definition [Trace]

The trace of A= [a;l, ., is defined by tr(4)=a;; +ay++a,, = X, a;.

i=1

Theorem 3.1.5

If A, B are square matrices of the same size and cE R, then
) tr(47) =tr(4)
r(cA)=ctr(4), c ER

2) tr(
tr(A+ B)=tr(4)+tr(B)
tr(
tr(

(1

(2)
3)
(4)
(5)

r(4—B)=tr(4)—tr(B)
r(AB)=tr(BA)

We prove the item (5) only and leave the rest as an exercise.

Zalkbkl) 35 St Z(Zb,ﬂ k) ((BA).

k=1 k=1li= k=1\i=1

3

Ms

1

w Let A= {1 _2], B= [_5 4]. Show that (5) of Theorem 3.1.5 is true.

4 5 3 2
http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ,[[1,-2], [4,5]])

B=matrix(QQ.[[5.4], [-3.2]])

print (AxB).trace() # trace. A.trace()
print

print (BxA).trace()

37

37
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™ Inverse matrix
I
| o Reference video: http://youtu.be/GCKM2VIU7bw, http://youtu.be/yeCUPdRx7Bk

@ Practice site: hitp://matrix.skku.ac.kr/knou—knowls/CLA—Week—3—Sec—3—2.html

[=] 5341 =] In this chapter, we introduce an inverse matrix of a square matrix which
E.-_ plays like a multiplicative inverse of a real number. We investigate the
properties of an inverse matrix. You will see that some properties holding in

the inverse of a real number are not true in the matrix inverse operation

although most hold in both inverses.

Definition

A square matrix 4 of order n is called invertible (or nonsingular) if
there is a square matrix B such that

AB=1I, = BA.

This matrix B if exists is called the inverse matrix of 4. If such a

matrix B does not exist, 4 is called noninvertible, (or singular).

w From matrices 4= [72 _5], B= [3 5], we see that B is the inverse

1 3 12
matrix of A by the following computation.
- 2—=51135 _[10]_
AB = [—1 3”1 2] B [0 1]*[2
_ 135 2—=5|_[|10]_
B4 {12][—1 3]*[01]*[2 "
143
Let 4=1256|. Note that the third row of 4 has all zeroes. Thus for
000
any matrix
biy by bys
B= by by by3| the third row of AB is [0 0 0]. Therefore there
by b3y bys
does not exist B such that 4B=1, that is, A is singular.
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A.is_invertible()

A=matrix(QQ,[[1,4,3],[2,5,6],[0,0,0]])

# check if matrix is invertible A.is_invertible()

False |
Theorem 3.2.1

If A4 is an invertible square matrix of order n, then an inverse of 4 is

unique.
Suppose that B, ¢ are inverses of 4. Then as

AB=BA=1,, AC=CA=1,
we have
B=PBI, =B(AC)=(BA)C=1,C=C

Thus an inverse of 4 is unique. |

A necessary and sufficient condition for A = [a b} to be invertible is that

ad—bcl—c a

cd

ad—bc# 0. Hence one has

d —b
ad—be ad—be

d—b]:

ad—be ad—bc

It is straightforward to check

d —b d —b
[ab] ad—bc ad—bc _ [10]: ad—bc ad—bc [ab] -
cd —c 01 —c a cd]”
ad—bc ad—bc ad—bec ad—bc
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Theorem 3.2.2

If A, B are invertible square matrices of order n and k is a nonzero

scalar, then the following hold.
(1) A~ is invertible and (4~ ") '= 4.

(2) AB is invertible and (4B) '=B"1'4"!.
1
kA .

(4) A" is invertible and (4™) '=A4 "= (4" YH)".

(3) kA is invertible and (k4) ' =

(1)~(4) Just check that the product of matrices are the identity matrix. W

Theorem 3.2.3

If 4 is an invertible matrix, then so is 47 and the following holds.
(AT)*I :(Ail)T.

35 13
12 27
. ) - 1 2 —5] [2 —5]
Solution 1+ —

Since A4 6—5[—1 3 1 3 |

1 [7 —3]_[7 —3]
B =7 —6l-2 11712 1 , we have

- | 7 —3”2 75]:[17 —44} .
B A {_2 L2 3 5 13 . Also since

(3 51[1 3] [13 44
AB*[1 2”2 7]*[5 17] we have

1 [ 17 —44]:[ 17 —44]
221—220( —5 13 -5 13
e http://matrix.skku.ac.kr/RPG_English/3-SO-MA-inverse.html

' Let A= . B= . Check that (4B) '=B"'4""'.

—
[E——)
—
[EE}

(4B)~!
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A=matrix(ZZ, 2, 2, [3, 5, 1, 2])
B=matrix(ZZ, 2, 2, [1, 3, 2, 7])

AB=Ax*B

# AB calculation

print AB.inverse() # inverse of AB, format A.inverse()

print

print B.inverse()*A.inverse() # BA-1)*A"(-1)

[ 17 -44]
[ -5 13]

[ 17 -44]
[ -5 13]

<3D printing Object of Conic Section>

http://www.youtube.com/watch?v=q_XPFJincmQ&feature=youtu.be
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~, Elementary matrices

[ @ Reference video: http://youtu.be/GCKM2VIU7bw, http://youtu.be/oQ2m6SSSquc
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—3—Sec—3—3.html

Ok r110] In the previous section, we defined an inverse of square matrices. In this
E—_ section, we shall discuss how to find an inverse of square matrices by using
[=] elementary row operations and elementary matrices.

Definition

An n by n matrix is called an elementary matrix if it can be obtained

from I, by performing a single elementary row operation (ERO). A

permutation matrix is obtained by exchanging rows of 1.

w Listed below are three elementary matrices and the operations that
produce them.

. Interchange the 2nd and the 3th rows. Ry, < Ry
: Add 2 times the Ist row to the 2nd row. 2R, + R, - R,

: Multiply the 2nd row by 3. 3R,— R,

SO = ON+E OO
OWoO OO HOO
— OO0 HROO OO

http://sage.skku.edu (Warning!! The index of Sage starts
from 0.)

El=elementary_matrix(4, rowl=1, row2=2) # elementary matrix r2 <--> r3
# elementary_matrix(n, rowl=i, row2=j) exchange of ith row, jth row
E2=elementary_matrix(4, rowl=2, scale=-3) # elemenatry matrix (-3)*r3
# elementary_matrix(n, rowl=i, scale=m) multiply ith row by m
E3=elementary_matrix(4, rowl=0, row2=3, scale=7) # row 7*r4 + rl

# elementary_matrix(n, rowl=i, row2=j, scale=m) add m times jth row to
the ith row.

print E1
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print E2

print E3

[1 00 0] [1 0 0 0] [100 7]

[0010] [0 1 0 0] [0 10 0]

[0 10 0] [0 0-3 0] [0 0 10]

[0 00 1] [0 0 O 1] (000 1] |

M [Property of elementary matrix] The product of an elementary matrix £ on

[Remark] The inverse of an elementary matrix is elementary.

_80_

the left and any matrix A is the matrix that results when the

corresponding same row operation is performed on A4.
(1 2 3 Ry> R, 1 2 3 [1 00 12 3] (1 2 3
111 013 001 111 013
10 1 3 111 L0 1 0 01 3] 11 11
(1 2 3 2R, + R, 1 2 3 (1 00 1 2 3] (1 2 3
111 5 7 210 111 357
10 1 3 013 L0 0 1 013/ [013
_1233 1 2 3 (1 00 1 23] [123
111 — |3 3 3 030 111 33 3
L0 1 3 013 L0 0 1 013] [013

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ, 3,3, [1,2,3,1,1,1,0,1,3])

El=elementary_matrix(3, rowl=1, row2=2) #r2 <-->r3

E2=elementary_matrix(3, rowl=1, row2=0, scale=2) # 2*rl + r2

E3=elementary_matrix(3, rowl=1, scale=3) #  3xr2

print E1*A

print

print E2*A

print

print E3*A

[1 2 3] [1 2 3] [1 2 3]

[0 1 3] [3 5 7] [3 3 3]

[111] [0 1 3] [0 1 3] [ |


http://sage.skku.edu
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(1 00][1 00 100 1 00]! 100
Since | 00 1{|{001|=|l010|, 001 =|001

L010/l010O 001 010 010

(1 00][1 0 O 100 100]! 1 0 0
Since |0 k 0|0 1/ 0|=|0 10|, |0 kO =10 1/k 0

00 1]J]l0 0 1 001 001 0 0 1

100][1 0 O 100 100! 1 0 0
Since |01 0]|l0 1 0o|=|010],]010 =0 1 0

0c1]lo —c 1 001 0cl 0 —c 1

El=elementary_matrix(3, rowl=1, row2=2) # r2 <-->r3
E2=elementary_matrix(3, rowl=2, row2=1, scale=4) # 4xr2 + r3
E3=elementary_matrix(3, rowl=1, scale=3) # 3xr2

print El.inverse()
print
print E2.inverse()
print

print E3.inverse()

[1 0 0] [1 0 0] [ 1 0 O]
[0 0 1] [0 1 0] [ 01/3 0]
[0 1 0] [0 -4 1] [ O 0 1]

Finding the inverse of an invertible matrix.

We investigate the method to find the inverse of an invertible matrix using
elementary matrices. First consider equivalent statements of an invertible matrix
(its proof will be treated in Chapter 7).

Theorem 3.3.1 [Equivalent statements]

For any nXxXn matrix A, the followings are equivalent.
(1) 4 is invertible.

(2) A is row equivalent to 7,. (i.e. RREF(4)=1))

(3) 4 can be expressed as a product of elementary matrices.
(4)

Ax=0 has only the trivial solution 0.
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[Remark]

REF(A} - RRFFLAY

Express as product of elementary matrices

E; - EEA=], = (A7 )= E, « EEJ,
Finding inverse using the Gauss-lordan Elimination method

Theorem 3.3.2 [Computation of an inverse]

4 1] ZEEE |

L+ A7)

[Remark] Finding an inverse using the Gauss-Jordan elimination.

[Step 1] For a given A, augment I, on the right side so that we make
a nx2n matrix [4 : I,].
[Step 2] Compute the RREF of [4: I].
[Step 3] Let [C ¢ D] be the RREF of [4: I,] in the step 2. Then, following hold.
(i) If C=1, then D=A"".

(i) If C# I,, then A is not invertible so that 4~ ' does not exist.

w Find the inverse of

W8 Consider [4: L]. Then
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1235 100
(4 Ll=1]253: 010
108: 001
and, its RREF is given as follows.
(123 100 1 2 3: 100
253! 010/ -10 1-3: —=210
1 08 001 0—2 5 ¢ —101
(12 3 100 12 3¢ 1 0 0
- 01—-3 ¢ —210| - |01—-3 : —2 1 0
00—1 —-521 00 1 ¢ 5—2—1
1 2 0 —14 6 3 100 ¢ —40 16 9
- 1010 13—5—3| - |01 0 : 13—-5-3|=[C{ D]
0 0 1 5—2—1 001 : 5—2—1
Since C=1, D=A4"".
—40 16 9
A '=| 13-5-3
5—2 —1
Find the inverse of
16 4
A=| 2 4-1
-12 5

It follows from a similar way to Example 03,

16 4: 100 16 4: 100
24—-1: 010 - 0—8—9: —2 10
- : 08 9: 101

1 6 4°: 100
- 0 —-8—-9: —210|=[C: D]
0 0 0: —111

Since C# L, A™' does not exist. C# 1.

% Find the inverse of

1 -1 2
A=|—-1 0 2
-6 4 11

e http://matrix.skku.ac.kr/RPG_English/3-MA-Inverse_by_RREF.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
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A=matrix(QQ, 3, 3, [1, -1, 2, -1, 0, 2, -6, 4, 11])
[=identity_matrix(3)
Aug=A.augment(l).echelon_form() # augmented matrix [A : I] echelon_form

show(Aug)

0 | 8/15 -19/15 2/15]
[ 0 1 0 | 1/15 -23/15 4/15]
1 | 4/15 -2/15 1/15]

We can extract inverse of 4 using slicing of the above matrix.

Aug|:, 3:6]

[ 8/15 -19/15 2/15]
[ 1/15 -23/15 4/15]
[ 4/15 -2/15 1/15]

§ —19 2
Thus A1=%l1 ~93 4}. m
4 —2 1

~-RIGHARN FEYNMAN

‘If you want to learn about nature, to S\ 2 PHYSICIST
appreciate nature, it is necessary to : “<x“"<”‘”<w<
understand the language(Mathematics) that ' ]
she speaks in.’ ‘ usad7

Richard Phillips Feynman (1918-1988) was an American theoretical physicist
known for his work in the path integral formulation of quantum mechanics,
the theory of quantum electrodynamics, and the physics of the superfluidity
of supercooled liquid helium, as well as in particle physics.
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~, Subspaces and Linear Independence

| @ Reference video: http://youtu.be/HFg_—8B47xM. http://youtu.be/UTTUg6JUFQM
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—4—Sec—3—4.html

In this section, we define a linear combination, a spanning set, a

linear (in)dependence and a subspace of R". We will also learn
how to solve the system of linear equations by using the fact that

solutions for a system of homogeneous linear equations form a

subspace of R".

Note that R" with standard addition and scalar multiplication is also called a

vector space over R and its elements are called vectors.

Definition [Subspace]

Let W be a nonempty subset of R". Then W is called a subspace of R”

if W satisfies the following two conditions.

(1) x, yewW = x+yeW (closed under the addition)
(2) xeW, kR = Ekx& W (closed under the scalar

multiplication)

» All subspaces of R" contain zero vector.
xeW, 0€R = 0x=0&W

w {0} and R" are subspaces of R" where 0= (0,0, -, 0) is denoted by
the origin. They are called the trivial subspaces. |

A subset LOZ{(x,y)E]RQ\ y=xz} of R? satisfies two conditions for

subspace. Hence, L, is a subspace of R?. On the other hand, a

subset Z; = {(z,y)€R? | y=2+1} of R? does not satisfy conditions

for subspace so that L, is not a subspace of R?Z.

(0,1), (1,2)= L, but (0,1)+(1,2)=(1,3)¢ L, [ |

_85_


http://youtu.be/HFq_-8B47xM
http://youtu.be/UTTUg6JUFQM
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-4-Sec-3-4.html

w All subspaces of R? are one of the followings.
1. zero subspace : {0}
2. Lines through the origin.

3. R?

All subspaces of R? are one of the following.
1. zero subspace : {0}

2. Lines through the origin

3. Planes through the origin

4. R3 ]

Show that a subset W= {(0,a,b,¢ d 0)la, b c,d =R} is a subspace of
RS.

Solution For
X= (07 aqs bl’ C1s d17 O), y= <07 Ay b2’ Co, d2, O) [S= W, ke ]R
the following hold.

(1) x+y=1(0, ay+ay, by +by, ¢; ey, dy +dy, 0)EW
(ii) kx= (0, kay, kby, ke, kdy, 0) € 7

Therefore, W is a subspace of RS, [ ]

Let M denote the set of all m Xn matrices over R.

m Xn

For A€ M,,..,, show that

is a subspace of R". (This W is called a solution space or null space
of A4)

wW={xeR"|Ax =0}

Clearly, 40=0 so that 0w, W=z @. Since for x, ye W, k€ER
Ax =0, Ay =0,

we can obtain that
Alx+y) =Ax+Ay=0+0=0 and
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A(kx) = k(A4x) = k0 = 0.
This implies x+ye W, kxeW.

Therefore, W is a subspace of R". [ |

Definition [linear combination]

If x€ R" can be expressed in the form

X = Xy T Xyt o FoX, ¢y Gy . ER
with {xy, X5, =, X,} € R", then x is called a linear combination of
vectors xi, Xy, v, X -

Let x,=(1, -2, —1), x,= (3, —5,4) be vectors of R? Can x-=

(2, —6,3) be a linear combination of x;and x,?

The answer is depend on whether there exist ¢,c¢ in R such
that

X = X T X,
From this observation, we can obtain

2 1 3 13y, 2
—6|=c,|—2 -5 = | -2 -5 Ll —6
3 4 —1 4 |l=

—1 3
One can easily show that the above system has no solution.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

+02

A=matrix(3, 3, [1, 3, 2, -2, -5, -6, -1, 4, 3]) # augmented matrix
print A.rref()

[1 0 0]
[0 1 0]
[0 0 1]

Since this system of linear equation has no solution, there are no such

scalars ¢, ¢, exist. Consequently, x is not a linear combination of x;, x,. l
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Show that the set of all linear combinations of §= {x;, X5, -, x,} € R"
W= {ex, +ex,+ - +eoxple, e o g €ER Y

is a subspace of R".

Solution

Let x,yeW, k€R. Then there exist ¢,d; €ER (i=1,2, .-, k) such
that

X=X toX,+  +¢X,, y=dx, +dXx,+ - +dx,.
Hence

x+y=(+d)x, + (e, +dy)x, + - + (¢, +d,)x,,

and kx = (kc)x, + (key)x, + - + (ke )x,,.
This implies x+y & W, kx&W.

Hence, W is a subspace of R”". [ |

@ n , we saw that for a subset §={x;, Xy, -, x,} € R", the set of all

linear combinations W={cx; + cx, + = +explep ¢ g ER}Y of 9 is a

subspace of R". We say W is a subspace of R" spanned by 5. In this case,
we say S spans W and S is a spanning set of W. We denote it

W=span (§) or W= <8 >.

In particular, if all vectors in R" can be expressed a linear combination of S,
then S spans R". That is,

R"= <§> = {clxl+c2x2+ o F X leps ey g, €ER G

(i) Show that §={(1,1), (~1,2)} is a spanning set of R”.
i (ii) Show that $={(1,0,0), (0,1,0), (1,—1,1) } is a spanning set of R?®.
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Definition [column space and row space]

Let A= [a;lE M, Then, n columns 4", 4%, ... 4™ of 4 span a

mXn-
subspace of R™. This subspace is called a column space of A, denote
by
< AW AW AW or Col(A).
Similarly, a row space of A is defined by a subspace of R" spanned
by m rows Ay, Ap), -, Ay, of A, denoted by
< AnyA@ys.., A,y > or Row(A).

For

determine whether §= {x;, x,, x;} spans R’ or not.

Xy = (]-7()’1)7 Xy = (_37 171)7 X3:(_2a 1a2)

This is a question whether there exist ¢;, ¢,, ¢35 such that a given
vector x = (z, y, z) is written as

X = X, + Xy + 3%, (; ER).

(Using column vectors)

T 1 -3 —2 1 —-3-2||% x
yl=c|0]|+cy| 1 |+ 1 = 01 1 ||el=|y ]
2 1 1 2 11 2| |z

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(3, 3, [1, -3, -2, 0, 1, 1, 1, 1, 2]) # coefficient matrix
print A.rref()

(10 1]
(01 1]
[0 0 O]

This means that one of ¢, ¢y, ¢ cannot be determined. Therefore this

linear system has a case that the system cannot determine a unique
solution. [
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Definition [Linearly Independent and Linearly Dependent]

If §={x,x, -, x,} S R" satisfies
Xy T Xy + 0 + X, =0 (c1s Cys s ,ER)
= cp=c= - =¢=>0
then x,, x,, -, x,(or subset S) are called linearly independent.
If x;, Xy, -+, X;(or subset ) are not linearly independent, then it is called

linearly dependent.

If S is linearly dependent, there exist at least one non-zero scalar

n {cl, Cyr iy ck} such that

Clxl + CQXZ + oe + Cka - 0 .

Q The unit vectors of R"

are linearly independent. This is because

n=n

=0
= ¢ (1,0, =,0)+¢(0,1, -,0)+--+¢, (0,0, --,1)= (0,0, -, 0)
= (Clac2a "'acn):(ovoa ao)

cie; teyey,+ 0 + e

> == - :Ck:()‘

Show that for x,=(2, —1), x,=(1,3), S={x,,x,} is linearly

independent.

w For any ¢, s €ER,

X+ ex, =0 = ¢ (2, —1)+¢(1,3)=1(0,0)
= 2c¢+tc=0, —¢+3c;,=0

Thus ¢; = ¢, =0, and S is linearly independent. |
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Show that if x;, x%,, x; in R" are linearly independent, then
X1, X1+ X9y X+ Xy TX3

are also linearly independent.

For any ¢ ¢ ¢; &R,

X Fo(x, +%x,) te(x, +x,+%x;) =0
= (cl+c2+c3)xl+ (62+03)X2+03X3 =0.

Since x,, x, x; are linearly independent,

¢ tete=0, ¢g+e;=0, ¢;=0

S c=c=c=0

Therefore x,, x, +x,, x; +x, +x, are linearly independent. |

=P ror

in R%, Show that §= {xl, X9, x3} is linearly dependent.

X = (lvoa _1)7 X9 = (17 170)7 X3:(03 171)

B For any ¢, ¢y, cs € R | If ;% + ¢oX, + ¢3x; = 0, then
1 2 3 141 2439 343

1 1 0 0 1 10|14 0
| 0 |+ey|1l|+eyll|=1]0] = 0 1 1||cl=]0 O
—1 0 1 0 =10 11]es 0

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(3, 3, [1, 1, 0, 0, 1, 1, -1, 0, 1]) # coefficient matrix
print A.rref()

[1 0 -1]
[0 1 1]
[0 O O]

This means that the above equations can be reduced to two equations

of three variables. Since it has three variables more than the number of

equations so that there are non-trivial solutions. One of them is given
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by ¢, =1, ¢, =—1, ¢;=1. Therefore there exist non zero scalars ¢, ¢y, ¢, S

is linearly dependent. [ |

Theorem 3.4.1
For a set §= {Xl, o °°g Xk,} ¢ R", the followings hold.

(1) A set § is linearly dependent if and only if some element in S can be
expressed as a linear combination of the other elements in S.

(2) If S contains the zero vector, then S is a linearly dependent.

(3) If a subset S of S is linearly dependent, then S is also linearly
dependent.

If § is linearly independent, then .S is also linearly independent.

(1) (=) If S is linearly dependent, then there exist ¢, ¢,, -+, ¢, such that
Xy FoXx,+ o +ex, =0
where at least one element in {¢, ¢, -, ¢} is a nonzero.

Without loss of generality, if ¢, # 0 then,

Ck

¢

Cs
2
X =|——|Xg+ -+ + X;,
il

so that x; can be expressed as a linear combination of the other vectors
in §
(=) Without loss of generality, we can write
X = Xy + 0 F X,
so that
(—x; +exy+ - +¢x,=0

Hence, § is linearly dependent since —1# 0.

Proofs of the rest are left as an exercise. [ |

In other words, that set § is linearly independent means that any vector in S

cannot be written as a linear combination of the other vectors in §.

In R", there are at most n vectors in a linearly independent set.
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Theorem 3.4.2 (For proof, see Theorem 7.1.2)

In R", m(>n) vectors are always linearly dependent.

%) For x,=(1,0,0), x,=(1,1,0), x,=(1,1,1), x,=(0,1,1) in R’ we
' can easily check that § = {x,, X,,X;, X,} is linearly dependent from

Theorem 3.4.2. |

[Remark] Lines and plaines (from the viewpoint of subspace)

(1) Note that the span of nonzero vector v in R". {tvlt €R} is a subspace
containing the zero vector. Also {x,+tv [t € R} forms a line through x,

and parallel to v. In other words, x=x,+tv is translate of x=1tv by x,.
(2) In general, if x,, v;, vy, =+, v, are vectors in R", then x=x,+t,v,+- +,v,
(t, € R) is a subset of R"™ which is the translation of a subspace

x=t,v, +--+1¢,v,, through the origin, by x,.
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™ Solution set and matrices

[ @ Reference video: http://youtu.be/dalxHJBHL_g, http://youtu.be/O0TPCpKW_eY
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—4—Sec—3—5.html

In this section, we first state the relationship between invertibility of

matrices and solutions to systems of linear equations, and then consider

homogeneous systems.

Theorem 3.5.1 [Relation between an invertible matrix and its solution]
If an n Xn matrix 4 is invertible and b is a vector in R", the system
Ax=D

has a unique solution x=4 " 'b.

The following system can be written as Ax =b.

T, +2zy+3x3= 1
2m1+5$2+3$3 = 3

:I,‘l +8.’1;3 = _].
123 Ty [ 1
where A=|25 3|, x=|2y|, b= 3|. It is easy to show that A is
108 T4 —1
—40 16 9]
invertible, and A4 '= 13 —5—3|. Thus the solution of the above
5 —2—1]

system is given by

—40 16 9 1 -1
x=A" b =| 13-5-3 31=1]1].
5 —2—1
That is z;, =—1, z, =1, z; =0. L]

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(3, 3, [1, 2, 3, 2, 5, 3, 1, 0, 8] # coefficient matrix
b=vector([1, 3, -1])
Ai=A.inverse() # inverse matrix calculation

print "x=", Ai*b

print

print "x=", A.solve_right(b) # solve directly.
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x= (-1, 1, 0), x= (-1, 1, 0) |

[Remark] The homogeneous linear system

12, tapxy +-+a,z, =0

Q91T+ gy T+ ay,xz, =0

A1y + Q2T o +e ATy = 0

can be written as Ax=0, where

Arp Qg -+ Ay Ly 0
Qg1 Qg -+ Qg Ty 0
A=|.7 . L x=107],0=1.
A1 A2 oo Gy Ty, 0

The vector x=0 is called a trivial solution, and the solution x# 0 is called a
nontrivial solution. Since a homogeneous linear system always has a trivial

solution, there are two cases as follows.

(1) It has only a trivial solution.
(2) It has infinitely many solutions (i.e. it has nontrivial solutions as well.)

Theorem 3.5.2 [Nontrivial solution of a homogeneous system]
A homogeneous system with m equations and n variables such that m <n

(i.e. the number of variables is greater than that of equations) has

nontrivial solutions.

For a detailed proof for this theorem, see Linear Algebra : A Geometric Approach
by S. Kumaresan, Prentice Hall of India, 2000.
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M The homogeneous linear system

T+ zytaxs+ x,=0
x+ z, =0
T, +2xy + x4 =0

has the following augmented matrix and its RREF.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

print "A="
print A

print

A=matrix(3, 5, [1, 1, 1, 1,0, 1, 0,0, 1,0, 1, 2, 1, 0, 0])

# augmented matrix

print "RREF(A)="
print A.rref()

# RREF

A=

[11110]
[10010]
[12100]

RREF(A)=

[1 0 0 1
[0 1 0-1
[0 0O 1 1

0]
0]
0]

The corresponding system of equations is

zy+x,=0
To— x4 =0
r3+x, =0

Let z, =7 (r: a real number). Then the solution to (2) is

Ty =T, Ty =""T, T3=T, Ty =Tr (reR).

The solution is trivial if »=0, and nontrivial if r# 0. [ |

Definition [The associated homogeneous system of linear equations]

Given a linear

system Ax=b, Ax=0 is called the associated

homogeneous system of linear equations of Ax=bh.
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w Consider a system of linear equations.

.

12 -2 02 0]]% 0

26 —5—24-3||%3|_|—1

00 5100 15| |z, 5

26 0 84 18], 6
Lg |

The associated homogeneous linear system is as the following:
.

0]]*2

3|73

S|y

81|z

|
cooo

L T6 |

Since the matrix size is greater than 2, let us use Sage.

The RREF of the augmented matrix of the above system is as follows :

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(4, 7, [1, 2, -2, 0, 2, 0, 0, 2, 6, -5, -2, 4, -3, -1, 0, 0, 5, 10, O,

15, 5, 2, 6, 0, 8, 4, 18, 6]) # augmented matrix
print A.rref() # RREF

[ 1 0 0 4 2 0 0

[ O 1 0 0 0 0 o0

[ O 0 1T 2 0 0 o0

[ O 0 0 0 0 11/3]

Thus the above system reduces to
r,+4x, +22, =0, ,=0, 23+22, =0, 5 =1/3.

Note that z, and =z, are free variables.

Let z,=r, z; =s. Then we have

7| 8 —4 -2
T2 0 0 0
T _
=10 |+r %Jrs g,r,sEIR.
o 0 0 1
M 0 0
| 76 3
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Consider the augmented matrix of RREF of its associated homogeneous

linear system.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

B=matrix(4, 7, [1, 2, -2, 0, 2, 0, O, 2, 6, -5, -2, 4, -3, 0, 0, 0, 5, 10, O,
15, 0, 2, 6, 0, 8, 4, 18, 0]) # augmented matrix
print B.rref() # RREF

[1004200]
(010000 0]
(001200 0]
(00000 10]

It is easy to see that the solution to this system is given by

71 —4 -2

To 0 0

T _

Hl=p 2+s O,T,SE]R. [ |
Ty 1 0

En 0 0

When compared geometrically the solutions to a system and those of
an associated homogeneous linear system, the solution set for the
associated homogeneous linear system is merely translated by the

vector x, below.

>
f=]
|
wlrooooco

We call the vector x, a particular solution which can be obtained by

substituting r=s=0.
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[Remark] Relation between the solution set of the linear system and that of the

associated homogeneous linear system.

If Ax=0 and Ax, =b, then
Ax+x,)= Ax+ Ax, = 0+b =bh.

Thus a system of linear equation Ax=Db has solutions. Let W be a solution
space to Ax=0. If x, is a solution to Ax=b, then

g+ W={x,+x |x €W}

is a solution set of Ax=b.

A geometric meaning of x,+ W which is a solution set of Ax=b is a set of
translation when a particular solution x, is added to a solution set W of Ax=0.

Since x,+ W does not contain a zero vector, it is not a subspace of R".

Theorem 3.5.3 [Equivalent theorem of an invertible matrix]

For an nXxn matrix A4, the following are equivalent.
1) RREF(4)=1,
2

3

(

(2) A is a product of elementary matrices.
(3)
(4) 0 is the unique solution to Ax=0.
(5)
(6)
(7)

A is invertible.

5
6
7

Ax=Db has a unique solution for any bER".
The columns of A are linearly independent.

The rows of A are linearly independent.

[Remark] The vectors of the solution space of Ax=0 are orthogonal to the rows of 4.
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Let us think of the homogeneous system Ax=0 with n variables. If the
system has m linear equations, then the size of matrix 4 is mXxXn. It can be

rewritten using inner product. Let A, A, =, A(,) indicate rows of a matrix
A.

An) Awy x| 1o

A(Q) X = A<2)' X 0

Am) Ay x] L0

Thus A, x=0(1< i< m) if x is a solution to Ax=0. That is, the

vectors in this solution space of Ax=0 are all orthogonal to the row vectors
of the matrix A4.

) Consider the system of linear equations: x;+ 2z, + 23— 32,=0,
20y — a9yt g — 22, =0, 22y +xy+ a3 —3x,=0. It is easy to check that
v=(1,1,3,2) is non-trivial solution of this system. Let us verify that v is

orthogonal to row vectors of the coefficient matrix A of the above

system.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix([[1,2,1,-3].[2,-1,1,-2],[2,1,1,-3]])
v=vector([1,1,3,2])

R=A.rows()

print v.dot_product(R[0])

print v.dot_product(R[1])

print v.dot_product(R[2])

0
0
0

Thus v is orthogonal to row vectors of the coefficient matrix A4 .
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[Remark] Hyperplane

(1) Line of zy-plane: the solution set of a linear equation a,z+a,y="0,
(ay,a5)# (0,0)

(2) Plane of ayz-space: the solution set of a linear equation
amx+ay+azz=>b, (a,as.a3)# (0,0,0)

(3) Hyperplane of R": the solution set of a;z, +ayxy+--+a,x, =b, 3 a;# 0
(If b=0, then it is a hyperplane passing through the origin)

a- x=0, (az 0)

The set at = {XE R" | a x= 0} is called an orthogonal complement of a.

n= (a, b, ¢)
N

7T Orthogonal complementof n
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~ Special matrices

[ | @ Reference video: http://youtu.be/dalxHJBHL_g, . http://youtu.be/jLh77sZOaM8
@ Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—4—Sec—3—6.html

We saw various properties of matrix operations. In this section, we
introduce special matrices and consider some of their crucial
properties.

o Diagonal matrix: A square matrix with the entries 0 except the main diagonal. A

diagonal matrix 4 with its main diagonal entries ay, agy, -+, a,, can be written as

diag(au, @995 .ous ann)

_ D))

diag(alp G995 " ann) -

nn

o Identity matrix: the matrix with its main diagonal entries all 1's, denoted by I,

o Scalar matrix: kI,

w The following are all diagonal matrices. 7 and J are scalar matrices.

-3 00 100
G:{g_ﬂ, H=| 0-20/|, 7I=|010]|, J:[gg]
0 01 001

G and H are written as G=diag(2, —1)and H = diag(—3, —2,1).

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

G=diagonal _matrix([2, -1]) # generate diagonal matrix
H=diagonal_matrix([-3, -2, 1]) # diagonal_matrix([al, a2, a3])
print G

print H
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o D)

[2 0] [-3 0 0]
[ 0 -1] [ 0 -2 0]
[0 O 1] |

Consider the following matrix.

1 0 0 ay; Qg Qg3 apy ajo a3
If D=|0-30]| and A= |ay Gy ag3|, DA=|73ay —3ay —3ay|.
00 2 a3y Ggzy A3 2ay, 2a3, 2a33

For a general matrix AZ[aU]an, DA is obtained by multiplying each
row of A by the corresponding entry of D, and AD is obtained by
multiplying each column of A by the corresponding entry of D,

Furthermore, it satisfies the following.

1 0 0 1 0 0
_ 1 1 0 0 _ L

pi=|" 3 0 ,D5l0 — 9243 ok pi=|0 213 Y

1 0 0 32 1

0 0 5 0 0 =

In other words, the power of a diagonal matrix is the same as the
diagonal matrix with the powers of the entries of the main diagonal. [

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

D=diagonal_matrix([1, -3, 2]) # generating a diagonal matrix
print "D*(-1)="
print D*(-1)

print

print "D*5="
print D*5
DA(-1)=

[ 1 0 0]
[ 0-1/3 0]
[ O 0 1/2]
D*b=

[ 1 0 0]
[ 0 -243 0]
[ O 0 32] [ |

- 103 -


http://sage.skku.edu
http://mathlab.knou.ac.kr:8080

Definition

If a square matrix A satisfies A7=A4, A is called a symmetric matrix.

If AT=— A, then A is called a skew-symmetric matrix.

In the following matrices, 4 and Z; are symmetric matrices and B is a

skew-symmetric matrix.

123 0 1—-2 100
A=1(245|, B=|—-1 0 3|, L=]|010
356 2—=3 0 001

e http://matrix.skku.ac.kr/RPG_English/3-SO-Symmetric-M.html

B R
)
[= ;

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(3, 3, [1, 2, 3, 2, 4, 5, 3, 5, 6])
B=matrix(3, 3, [0, 1, -2, -1, 0, 3, 2, -3, 0])

print bool(A==A.transpose()) # Check if A symmetric

print bool(-B==B.transpose()) # Check if B anti-symmetric
True

True [ |

If A is a square matrix, prove the following.

(1) A+ A7 is a symmetric matrix.
(2) A— AT is a skew-symmetric matrix.
(1) Since (A+A")"=A"+(A")"=4T+A=4+4", A+4" is
a symmetric matrix.
(2) Since (A—AT)T=AT—(AT)T =A4T—A4=—(A4—-AT), A-ATis

a skew-symmetric matrix. [ |
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[Remark]

A given matrix can be written uniquely as a sum of a symmetric matrix and a

skew-symmetric matrix.

A+AT  A—A4aT A+AT
For any given matrix A, 4 = 5 + 5 and — is a symmetric
4T
matrix and ——— is a skew-symmetric matrix. W

2

y Lower triangular matrix: A square matrix whose entries under the main diagonal
are all zeros
» Upper triangular matrix: A square matrix whose entries above the main diagonal

are all zeros

In general, 4 x4 triangular matrices are as follows.

O3 %z Gy 914 a, 0 0 0

0 @y Gy3 Gy ) _ _ sy s 0 0

0 U Upper Triangular Matrix - i . Lower Triangular Matrix
Qg3 Qg4 Gz, A3y azz 0

0 0 0 ay Qg Qgp Qy3 Gy

Theorem 3.6.1 [Property of a triangular matrix]

Let 4 andB be a lower triangular matrix.
(1) A- B is a lower triangular matrix.

1

(2) If A is an invertible matrix, then 4~ " is a lower triangular matrix.

1

(3) If a; =1 for all 4, then the main diagonal entries of 4~ ' is all 1’s.

Let A be a square matrix. If there exists an positive integer k£ such that
i A'=0 (4 is called nilpotent), (/—A4) is invertible and (I—A) '=
I+ A+ A*+--+ A% ! This is because

(I—A)I +A+-+AF =1 u
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Chapter 3

e http://matrix.skku.ac.kr/LA-Lab/index.htm
e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

Indicate whether the statement is true (T) or false (F). Justify your

answer.

(a) If three nonzero vectors form a linearly independent set, then each vector in
the set can be expressed as a linear combination of the other two.

(b) The set of all linear combinations of two vectors v and w in R" is a plane.

(¢) If u cannot be expressed as a linear combination of v and w, then the three
vectors are linearly independent.

(d) A set of vectors in R"™ that contains is linearly dependent.

(e) If {v,, v,, v;} is a linearly independent set, then so is the set {kv,, kv,, kv,;} for

every nonzero scalar k.

1 3 -1 2 5 1o
[ PN When A = [4 _1], B= [ 1 -1 4], C=| 2 —1|, confirm the following.
3 2

A(BC)=(AB)C.

When A = [_g _g]’ B= [_1 3], C= [_g :i] confirm that AB=AC

and that Bz C.

When 4= [411 _ i’] , compute the following.

3A%—24%+ 54— 41,
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Show that B is the inverse of 4. And confirm that (47" !'=(4"H7T.

11 2 2 —17 11
A=124 =3, B=|—1 11 —7
36 —5 0 3 —2

If A2=A, show that (/—24)=(71—24)"".

Find a 3Xx3 elementary matrix corresponding to each elementary
operation.
(1) B, = Ry
(2) 2Ry, - R,
(3) —2R, + Ry~ R,

Using elementary operations, find the inverse of the following matrix.

1432
101
7262013
(1| o011 @ 1153 4
Lo 54 6 3
1432 1 0 00
1432 1000 o1l 7T 1,4,
i ] - 72620131 0100| 22 2 2 .
Sl T 112345 0010 001 3: 6 —110
54 6 3% 0001 . 57T 911
000 1: < === 77
7 . 9% 15 1 3| 9% 15 1 3|
1000 = Y £ b 23
0100: ﬂ _g_il 59 9 1 1
' 4 4 4 4 | : 1 |4 4 4 oa
Lo: _ 147 23 1 3 - ler bl D=4 T o2 o1 s M
e ) o
.57 9 1 1 st _9 1 1
0001: T 1 7| 4 4 4 4|
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100
[ NI (ot =0 1 0
301

(1) What is £4 and confirm how E affects on A4.
(2) What is AEF and confirm how £ affects on A.

and A be any 3 X3 matrix.

Determine if W is a subspace of R?.
W, = {(3317 zy) |2y = 0}

Determine if W is a subspace of R?®.

% = {(xlv Tq, 553) |CE1 = Ty = (E3}

Find a vector equation and a parameterized equation of the subspace
spanned by the following vectors.
(@) vy=04, —4,2), v,=(-3,5,7)
(b) vy =(1,5, —1,4,2), v, =1(2,2,0,1, —4)

(a) ®, =4s—3t, my =—4s+5t, ;3 =2s+Tt where s, t in R,
(b) 2y =s5+2t, 2y =5s+2t, x3=—35, v, =4s+t, x;=2s—4¢t. M

Give a solution by finding the inverse of the coefficient matrix of the

system.

3z —z=1
Jrt+4y—2z2=1
3x+o5y—22=2

Determine if the homogeneous system has a nontrivial solutoin.
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r—y+2z2+ w=0

{x-l—y-l— z— w=0
T — z—b5w=0

Check if the following matrix is invertible. If so, find its inverse by

using a property of special matrices.

2 0 0
0 =50
0 0 3

Find the product by using a property of special matrices.

2?0 9 4][2 0
0—— of|l-4 2 1
2 3 2/10 7%
0 0 -5

Determine a, b, ¢, d so that A is skew-symmetric matrix.

0 2a 3a —3b
A=|—2 0 2a—4c
—6—5 d

CED /- |7
ay

1 Q22

- A
satisfies a;; # 0 and a =—

P show that A can be expressed
11

as follows.

[10
a1l

[(111 (P
0 b

What is the value of b?

e e P

alll0 b

app Q12
Qg1 Qo9

=> Q99 = aayy +aud

12091 G109 ™ G209

|

11

b:a227
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Let 4 be a square matrix. Explain why the following hold.
(1) If A contains a row or a column consisting of 0's, A4 is not
invertible.
(2) If A contains the same rows or columns, A4 is not invertible.
(3) If A contains a row or column which is a scalar multiple of

another row or column of A4.

Let A be an nXxn square matrix. Discuss what condition is need to
have AB=AC = B=C.

Find 2 X 2 matrices 4, B and explain the relation with ERO.

ab dc]

A:[cd ba

| o

Decide if the following 4 vectors are linearly independent.
vV, = (47 _57 27 6)7 Vo = (2u _27 17 3)9 V3 = (67 _37 37 9)v Vi = (4a - 17 57 6)

(m If Ax=b and Ax=c¢ have a solution, prove that Ax =b+c¢ has a

solution.

Suppose A4 is an invertible matrix of order n. If v in R" is
perpendicular to every row of A4, what is v? Justify your answer.

m Prove that a necessary and sufficient condition for a diagonal matrix
to be invertible is that there is no zero entry in the main diagonal.

m If A is invertible and symmetric, so is 4.

A=A"T AA"'=T1 and I=1"= (44" )"=(4"H"4" .
=> A Y A=T => A '=UHT => A7 is symmetric. [ |
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4.1 Definition and Properties of the Determinants

4.2 Cofactor Expansion and Applications of the Determinants
4.3 Cramer's Rule

x4 4 Application of Determinant

4.5 Eigenvalues and Eigenvectors
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The concept of determinant was introduced 150
years before the use of modern matrix, and we
have wused the determinant to solve the
systems of linear equations for over 100 years.
In late 19th century, Sylvester introduced the
concept of matrix and the method for solving
systems of equations by using an inverse
matrix, where the determinant is used to check
if an inverse of a matrix exists or not. Also,
the determinant can be wused to find area,
volume, equations of lines or planes, and
exterior product. It also helps in geometric

interpretation of vectors.

In this chapter, we first define the determinant
and review its properties. Then we study how to compute the determinant by
cofactor expansion. We also study Cramer's rule which solves the systems of

linear equations by using the determinant.

One of the most important concepts in linear algebra is eigenvalues and

eigenvectors. Figenvalues have almost all important informations by n components

from an object with n?

components. FEigenvalues are not only important in
theoretical perspective but also applicable to almost all areas related to matrix,
such as, finding the solutions of differential equations, computing the power of
given matrix, Google search, and image compression, etc. In the last section of

this chapter, we compute eigenvalues by using the determinant.
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\ Definition of Determinant

[ ] o Reference video: http://youtu.be/DM—qg2ZuQtl0, http://youtu.be/Vi8LIKKKHgg
e Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—5—Sec—4—1.html

In this section, we introduce a determinant function which assigns any
square matrix A4 to a real number f(A4). In order to define the
determinant function, we first introduce permutation. Then we review

the properties of the determinant function.

Definition [Permutation]

For a set of natural numbers S= {1, 2, ..., n}, permutation is a one to
one function from S to §.

We simply denote a permutation as o= (o(1) o(2) - o(n))=(0, iy - i,). As a
permutation ¢ is an one to one correspondence, the range {z‘l,z‘Q, 7zn} is

simply a rearrangement of 1,2, .. ,n. Hence, there are n! permutations on

S ={1,2, -, n}. We denote the set of all permutations of set § by §,.

n S, n!
1 (1) 1!
2 12), 21) 21
3 (123),(231), 312), (132), (213), 321) 3!
4 (1234)(1,243), . ,4321),4321) 41
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[Remark] Inversion

In permutation (j; j, - j,). an inversion is the case when a bigger natural

number placed on the left hand side of a smaller natural number. For example,

in a permutation (1 4 2 3), 4 is placed on the left hand side of 2, and hence

(4 2) is an inversion. Similarly, (4 3) is an inversion.

(1 @DQO 3)

Number of inversions for j, : after (k+1)-th index, the number of indexes which
is smaller than k-th index j, is called the number of inversions for j,.. In the

above example, the number of inversion for 4 is 2. Number of inversions for a
permutation (j, j, - j,) is the total sum of each number of inversions for j,,

k=1,2, -, n.

Definition [Even permutation and odd permutation]

If number of inversions for a permutation is even than it is called an
even permutation, If the number is odd than it is called an odd
permutation.

Determine whether it is even or odd permutation by computing the
inversion numbers for a permutation c=(5 1 2 4 3) in ;.

BB The number of inversions for 5 is 4. The number of inversions

for 1 is O, for 2 is O, for 4 is 1, and 3 is the last index. Hence, the total
sum is 4+0+0+14+0=5, and it is an odd permutation. ]
e http://matrix.skku.ac.kr/RPG_English/4-TF-Permutation.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

Permutation([5,1,2,4,3]).inversions() # inversions
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[[0, 1], [0, 2], [O, 3], [0, 4], [3, 4]] # Note!l Index starts from 0

Permutation([5,1,2,4,3]).number_of_inversions() # Number of inversions

Permutation([5,1,2,4,3]).is_even() # check whether it is even permutation

False u

Definition [Signature function]

Signature function sgn: S, - {+1, —1}, which assigns each permuta

tion of 5, to either +1 or -1 as follows.

sgn(o) = {+ ) (0 : evenpermutation)
: —1 (o : odd permutation)

iy Classify the permutations of §; to either even or odd permutation.

permuta number of .
. . . class sign
tions Inversions
(12 3) 0 even +
(231) 2 (21,31) even +
(312) 2 (31,32) even +
(132) 1 (32) odd —
213 1 (21 odd —
( ) (2 1) -
B321)]3 32 31,21) odd -

In permutation, if two numbers switch the location then the signature is changed
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Theorem 4.1.1

Let 7 be a permutation by switching any two numbers from given
permutation o. Then

sgn(T) = sgn(o)

Definition [Determinant| [Leibniz formula]

Let A = [aij]be an nXxn matrix. We denote the determinant of matrix

A as det(4) or |A| and define it as follows.

det(A): Z Sgn(o—)ald(l)aﬂ(r(?) Qo (n)

oS,

. By definition, 1x1 matrix 4 =[a] has it's determinant as det(4)=a.

Each term sgn(o)a;,(1)as,(2) = @us(n) in the determinant is from the matrix A, by

choosing a row and a column, without any overlapping, then multiplying them
and assigning a corresponding signature.

wg Find the det(4), where 4 = [““ 12

A1 QA

As A is 2x2 matrix, S8, = {0y, o,}=1{(1 2), (2 1)}. Since
sgn(o;)=1, sgn(o,) =—1, we have

det(4) = Sgn(al)alal(l)GJZm(Z) + sgn (o, )alaz(l)a202(2) = Qy109p T Q1209 -

@y 012
@1 Qa

- +
Sarrus Method

https://en.wikipedia.org/wiki/Rule_of_Sarrus [ |
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ay; QA 4g3

Find the det(A), where A= |ay; a9y a93].

a3; Gzy Aas3

As A4 is 3 X3 matrix,
53 = {0'170'270'370'470-570-6 }: {(1 2 3)7 (2 3 1)7 (3 1 2)7
(132), (213), (321)}.

Since sgn(o,)=1, sgn(oy) =1, sgnlo;) =1, sgnlo,)=—1, sgnlo;)=—1,
sgn(og) =—1,

by substituting them into the definition of the determinant, we have

det(4) = sgn(m)algl(nazol@)“%l(?’) + sgn(02)aloZ(l)a2a2(2)a3az(3)
+ o+ 58n(06)ag,, (1), (2) 030, (3)

= 11099033 T Q19093031 T Q13091030 — A11093035 — A19G91033 — Q309903

(33 ﬂu___aﬂ'}ll:sﬂ aqy
1991 952 0%
953 105, G Qg3 B31

- + u
Sarrus Method

Compute the determinant of the following matrices.

1 2 3
Az[i _é] B=|-4 5 6}
7 -89
N R o
|A|—‘4_2‘—3( 2)—(1)(4) =—10.
3] 1 2 31
[Bl= |—4 5 6| =45)+(84)+(96)— (105)— (—48)— (— 72) = 240.
9] 7 -8 9|7
e http://matrix.skku.ac.kr/RPG_English/4-B1-Det-matrix.html

- 117 -


http://matrix.skku.ac.kr/RPG_English/4-B1-Det-matrix.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

B=matrix(QQ, 3, 3, [1, 2, 3, -4, 5, 6, 7, -8, 9]

print B.det() # compute the determinant

240 |

[Remark] Sarrus' method cannot be applied to the case of degree 4 or higher.

Hence, the determinant with degree 4 or higher should be computed by the
definition. But in that case, there are too many terms and signs to be
determined. (Indeed, for degree 4 case, there are 4!=24 terms, and for degree
10, there are 10! =3,628,800 terms to compute). Therefore, it is more effective

to study the properties of the determinant and find the determinant by using

these properties. (We will skip the proofs but will verify them by examples).

Properties of the determinant

Theorem 4.1.2

A square matrix 4 and its transpose matrix A7 have the same

determinant.

M http://math.stackexchange.com/questions/123923/a-matrix—and—-its—transpose—have-
the—same—set—of—eigenvalues

[n S . |B1=240, and B" =|2 5—8/|. Since
3 6 9

|BT| = = (45)+(96) + (84) — (105) — (— 48) — (— 72) = 240

W N =
o Otk
|
© 0
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we have |BI=|B7]. O
http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

B=matrix(QQ, 3, 3, [1, 2, 3, -4, 5, 6, 7, -8, 9])
print B.transpose().det()

240 |

o The properties of the determinant regarding to rows also work to columns.

Theorem 4.1.3

Let B be a matrix obtained by switching two rows (columns) from a
square matrix A then |B|=—|A4].

Let B=[b;] be a matrix obtained by replacing rth and sth row of

A=layl. r < s. This means b,;=a,;. b,;=a,; and b;=a; if i# rs.
|Bl = E sgn (o‘) blrr(1)'"b'ra(T)"'bsa(s)"'bnd(n) (by definition)
cES,
= Z Sgn(a) Q1o (1)*Aso (r)*Aro(s) " Ano (n)
oES,
= Z sgn (U) a’la(l)"a'r'o(s)"'a’scr(r)"‘ano(n)
oES,
= - Z sgn (0’) A1 (1) Qg (1) Qg5 (s)** Uno (n) (by theorem 411)
cES,
= —4| u
_[2-1 _[3 2] o 2—-1]_ 3 2|__
: Let A= {3 2] and B = [2_1]. Since ‘ 3 2‘—7 and ‘2_1‘— 7,
i IBl=—14l. [ |

Theorem 4.1.4

If a square matrix 4 has two identical rows (columns) then |A4]=0.

Let 4= which has identical first and third rows. Note

_ = =

N O N

3
7
3
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|A|=‘— =(0)+14)+(=6)—(0)—(14)=(=6)=0

— ==
N O N
W g W

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ, 3, 3, [1, 2, 3, -1, 0, 7, 1, 2, 3])
print A.det() # compute the determinant

0 |

Theorem 4.1.5

If a square matrix A has a row (column) with identical zeros then
|Al=0.

which has identical zeros in the third row. Observe

XO0+2X6X0+3X4X0—2X4X0—3X5X0—1X6X0=0 |

Theorem 4.1.6

Let B be a matrix obtained by multiplying k& times a row of a square

matrix 4. Then |B|=kA4].

Example 1 0
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Theorem 4.1.7

If a square matrix A has two proportional rows then |A|=0.

Theorem  4.1.8

Let A be a square matrix and k times of one row is added to another
row of A and name this new matrix as B, then |B|=A4|.

Let B be a new matrix whose second row is obtained by adding &
times of the first row of 4 to 4 € M,.

det(B)= Y sgn(o)ay, ) (kay, o) + ase ()30 () Ano (n)

cE S,
det(B) =k Z sgn(0)a10(1)a10(2)a30(3)""an0(n) + ZS sgn(U)alu(l)a20(2)""a‘na(n)
cES, cE S,
=> det(B)= ), sgn(0)ay, (1)a20(2)--Apo(n) = | Al (by Theorem 4.1.4) |
cES,
1 2 3
Let A=|2 —1 3| and 2 times of the second row is added to the first
1 01
row and name it as matrix B. Then
5 09 1+2- 2 2+2(—1) 3+2- 3
B=12—-1 3|= 2 —1 3
1 01 1 0 1
Note that |4A|=4=|B] . [ |

Theorem  4.1.9

If A=|a

the product of the diagonal elements. That is,

,;j] is an nXn triangular matrix, the determinant of A equals

Al = a0y @

nn

2
0
From the previous theorem, | 0
0
0
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[Remark] How to compute the determinant

1. Use elementary row operations to make many zeros to a certain row

(column).
2. Multiply the diagonal elements.

% Note that during the elementary row operations, if you multiply k& times a
row (column) or switch two rows (columns), do not forget to multiply 1/k and

-1.

w Find the determinant of a matrix 4, where

0 15
A=|3-69
2 61
0 15 3—69
[Al=]13-6 9|=—]0 15 R~ R,
2 61 2 61
1—-23
=—3(0 15
2 61
1—-2 3
=—3/0 1 5 (—2)R, + R,
0 10—5
1-2 3
=30 1 5 (—10)R, + Ry
0 0—55
1—23
=(=3)(=55)|0 1 5|=(—3)(—=55)(1) =165
0 01

Theorem 4.1.10
Let £ be an n Xn elementary matrix. Then det(£4)= det(£)det(4).
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[Remark] The determinant of an elementary matrix

1. If E is obtained by multiplying k (k # 0) to a row of I,, det (£)=k

2. If E is obtained by switching two rows of 7,, det(£)=—1

3. If £ is obtained by multiplying k£ times a row and adding it to another row
of I,, det(®)=1

4. If A is an nXn matrix and £ is an elementary matrix,
det(FA)=det(E)- det(A).

Equivalent conditions for invertible matrix

Theorem 4.1.11

A is invertible if and only if detd# 0.

Theorem 4.1.12

For any two n Xn matrices 4 and B, |AB|=|A4llB|.

/ _
w’ Verify the above theorem with matrices A = [éi] and B = [? é]
: . 1 2]12—1 4 3
Solution — =
Since AB [3 4H1 2] [10 5], and
_ 12| __ N A O | 43 __
Al = 34‘7 2, 1B] ’1 2’ 5, |AB| ‘105 10
|AB|=—10=|4]|B]. U

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ, 2, 2, [1, 2, 3, 4]
B=matrix(QQ, 2, 2, [2, -1, 1, 2])
C=AxB

print "det(AB)=", C.det()

print "det(A)xdet(B)=", A.det()*B.det()

det(AB)= -10
det(A)*det(B)= -10
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Theorem 4.1.13

If a square matrix A is invertible then [A4|# 0 and |4~ !|= %

@ Verify the above Theorem with a matrix 4 = [:1)’ 2].

-2 1
WUE Ais invertible with 47 '= l 3 _1/|. Observe [4|=—2# 0 and
2 2
S S
A7 = >~ TAT 0

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ, 2, 2, [1, 2, 3, 4])
Ai=A.inverse()

print "det(A)=", A.det()

print "det(A7(-1))=", Ai.det()

det(A)= -2
det(Ar(-1))= -1/2 [ |

[ LY(20)\(% i) SEOUL
AS/\14)\xV KOREA

[19th International Linear Algebra Conference(Sungkyunkwan University, 2014)]
http://www.ilas2014.org/
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Cofactor Expansion and Applications
_ of the Determinants

[ | e Reference Video: http://youtu.be/XPCDOZYoHSI, http://youtu.be/m6l2my6pSwY
e Practice Site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—5—Sec—4—2.html

In this section, we introduce a method which is convenient to compute
the determinant as well as important in theory. Moreover, by applying

this method, we introduce an easier formula to compute the inverse of

a matrix.

Definition [Minor and cofactor]

We denote a submatrix, by removing the ith row and jth column of a

given square matrix A =[a;]. as A(ilj). We call its determinant
M,-jzdetA(ilj) as minor of A4 for a; We also call 4=

(—1)"A(ilj)|= (=1)"/M,; as cofactor of A for a,;.

=1

3 1—4
For given matrix A=|2 5 6/, find the minor and cofactor of A for
14 8
a/ll.
The minor of A for a;, is M, =detd(1]1)= ‘ ’ g‘ — 16 and the
cofactor of A for a,, is A, =(—1)""'M;, =16. [ |

Definition [Adjoint matrix]

Let A;; be a cofactor of n xn matrix A= [a;] for a;. The matrix [Aij]T

is called an adjoint matrix of 4 and is denoted by adj4. That is,

Ay Ay Ay A Ay Ay T
adj A = /:112 /}22 x‘.lnz _ /:121 /:122 /.12

*’;lln";IQn"' A Anl An2 A

nn
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M Find adj4 of the following matrix.

A:

5 6 2
1 0-3

3—2 1}

A, = (_1)1+1
A13 — (_1)1+3
AQQ — (71)24—2
A, = (71)3+1
Ay = (_1)3+3

Therefore, adj4

(O[O0
L1
[= :

Note the cofactor of A for each element is as follows.

6 2|_ o q\+2|0 2|
0_3|=18 Ap=(-1) 1_3‘—17
5 6| s —2 1]
1—-0] 6 Ay =(-1) 0—3‘7 6
3 1| (24332 _
L_3|==10 Ay=(=1) L ol 2
-2 1|_ (2|3 1| __
62‘* 10 Az =(—1) 52‘ 1
3—2]|_
s 6= 28

—18 —6-10
=| 17—10 —1

-6 —2 28

e http://matrix.skku.ac.kr/RPG_English/4-MA-adjoint.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

print A.adjoint()

A=matrix(QQ, 3, 3, [3, -2, 1, 5, 6, 2, 1, 0, -3])

# adjoint matrix

[-18 -6 -10]
[ 17 -10 -1]
[ -6 -2 28]

Cofactor expansion

The determinant of 3 X3 matrix 4 = |ay

ayp Qg
Qg9

Ggp Q39

- 126 -
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|Al= a115533 + 1509305, + a1309, 435 = A13095031 — Q19051033 — 1102303
= ap (a22a33 — Q23032 )+ A (a13a32 — Q12033 )+ as; (a12a23 - a13a22)
=ay Ay T ag Ay TagAs,

(Expand around the first column)

This is known as (Laplace) cofactor expansion of 4 around the first column.

Q Cofactor expansion works for any column and any row.

@ For any 3 X3 matrix 4= la;;]. the following identity holds. That is,

[ 3 3 3
Z ayp Ay, aypAyy, Z aypAsy,
k=1 k=1 b=1
3 3 3 Al 0 0
A adid=| DJay Ay Yiaydy Daydy|=|0 141 0 [=14] L
k=1 k=1 k=1 0 0 |A|
3 3 3
E agp Ay agp Aoy E agpAsy
lk=1 k=1 k=1 ]

Which shows i]a:k.A,vk:{ Al G=5)
=1 0 (i# j)

Read: http://nptel.ac.in/courses/122104018/node29.html

For the previous example M

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ, 3, 3, [3, -2, 1, 5, 6, 2, 1, 0, -3])
print "det(A)=", A.det()

print "Axadj(A)="

print A*A.adjoint()

det(A)= -94

Axadj(A)=

[-94 0 0]

[ 0-94 0]

[ 0 0 -94] |

Therefore the following holds.
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Theorem 4.2.1 [Cofactor expansion]

Let A be a n Xn matrix. For any i, j (1< i, j< n) the following holds.

Al =a;;A; +apAy +-+a,A;,, (cofactor expansion around ith row)

|Al=a,;A,;+ ay;Ay;+-+a,;A,; (cofactor expansion around jth column)

nj<ing

When computing the determinant, it is advantageous to use the cofactor

expansion around the row (column) which has many zeros.

Find the determinant of a given matrix by using the cofactor expansion.

35—26
|1 2-11
A_24 15

37 53

Multiply (-2) to the 2nd row and add it to the 3rd row. Multiply (-3) to
the 2nd row and add it to the both 1st and 4th row. Then

0—1 13
|11 2—-11
4= 0 0 33
0 1 80
Now we cofactor expand around the first column,
—113
lAl=0+1)(—=1)*""| 03 3|+0+0
180
=(—1)[0+0+3—9+24—0] = —18. [

Theorem 4.2.2 [Inverse matrix by using the adjoint matrix]

Let 4 be an n Xn invertible matrix, then the inverse matrix of A4 is
1

A" l=
|A|

adj A.
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From <, find the inverse matrix of A4.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix(QQ, 3, 3, [3, -2, 1, 5, 6, 2, 1, 0, -3])

dA=A.det() # compute the determinant
adjA=A.adjoint() # compute adjoint matrix

print "(1/dA)*adjA="

print (1/dA)xadjA # compute inverse matrix
print

print "A*(-1)="

print A.inverse() # compare the results of inverse matrix

(1/dA)+adjA=

[ 9/47 3/47 5/47]
[-17/94 5/47  1/94]
[ 3/47 1/47 -14/47]

AN-1)=

[ 9/47 3/47 5/47]
[-17/94 5/47  1/94]
[ 3/47 1/47 -14/47]
[ 3/47 1/47 -14/47]

Augment the
Teaching of
E;inear
Algehra through the use of
nftware

Tonls

[ATLAST project] http://wwwl.umassd.edu/SpecialPrograms/Atlast/
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~, Cramer's Rule

e Reference video: http://youtu.be/OlmrmmWXuvU, http://youtu.be/m2NkOX7gE50
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—6—Sec—4—3.html

In this section, we introduce Cramer’s rule which is very useful tool for

solving a system of linear equations.

Q Cramer's rule can be applied to systems of linear equations with the same

number of unknowns and the equations.

Theorem 4.3.1 [Cramer's Rule]

For a system of linear equations,
a) Ty + a9y +- +ay,z, =0,

U911 T T Agoy + 0+ + a9, T, = b,

ap12q +(1n2172 +ee Apnlyp = bn’

Ly by
b

let A be a coefficient matrix, and x=| 2|, b = .2 |. Then the system
T b

n n

of linear equations can be written as Ax=b. If |4]# 0, the system of

linear equations has a unique solution as follows:

14yl _ 14, 14,
1'1_ |A|7x2_ |A|77xn_ |A|
Where A4;(j=1,2, -, n) denotes the matrix 4 with jth column

replaced by the vector b.

Since | A| # 0, A is invertible. Hence the system of linear equations

Ax=Db has a unique solution x=A4 'b. Since 4~ '= |%ade, we have

[ All A21 Anl ]

Ty Ay Agy o Ay | b

IRE ! . ) 1 : : b,

= |72 =L adiAlb = = .

S E (IAI adiAb =T a4, oA

z, : : : b,
,Aln A2n Ann_
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blAlj + b2A2] +"' + bnAn]
|Al

Observe the jth component of x is z; = . Since

ay;Ayjtag Ay ot a A, = AT,

if we denote A4; as a matrix A with jth column replaced by the vector b,

then we have

14,
xr., = ——

j |A| (]:172a 777/) .

w Solve the following system of linear equations by Cramer's rule.

— 2z, +3x,—x3= 1
$1+2x2—:173: 4
—2x,— xytTy3=—3

Let A be the coefficient matrix. Then

-2 3—1 1 3—-1
lAl=| 1 2—-1|=—2,14,1=| 4 2—1|=—4,
—2—1 1 —-3—1 1
-2 1-1 -2 3 1
| Ayl =| 1 4—1|=—6, |A;]=| 1 2 4|=-8, and hence
—2—-3 1 —2—-1-3
| A | —4 | A, | —6 | A | -8
T, = T4 ——_2—2, Ty = T4 ——_2—3, Ty = A ——_2—4. [ |

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A = matrix(3,3,[-2,3,-1,1,2,-1,-2,—-1,1]);

A1 = matrix(3,3,[1, 3, -1,4, 2,-1,-3,-1,1]);
A2 = matrix(3,3,[-2,1, -1, 1,4,-1,-2,-3,11);
A3 = matrix(3,3,[-2,3,1, 1, 2, 4, —2,-1,-3]);
print A.det()

print A1.det()

print A2.det()

print A3.det()

print "x =", A1.det()/A.det()
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print "y =", A2.det()/A.det()
print "z =", A3.det()/A.det()

M Solve the following system of linear equations by Cramer's rule.

— 2z, + 3z, — 23 =0
Ty +2zy—23=0
—2x,— xytxy=0.

From WIAI =—2, and each matrix A4,, 4,, A; has zeros column,

|4,1=14,1=14,1=0. Hence, the solution is z =, =z, =23 =0 [ |

Theorem 4.3.2 [Equivalence Theorem for Invertible Matrix]

For an nXxXn matrix 4, the following are equivalent.
(1) RREF(4) =1,
(2
(3
(4
(
(
(
(

) A is a product of elementary matrices.
)
)
5) Ax=b has a unique solution for any b€ R".
)
)
)

A is invertible.

0 is the unique solution to Ax=0.

6) The columns of 4 are linearly independent.
7) The rows of A are linearly independent.

8) 14l #0

Q Note that there are more equivalent statements for the above theorem. For

more equivalent statements, refer Theorem 7.4.9 in section 7.4.
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4 4\ *Application of Determinant
N

o Reference video: http://youtu.be/OlmrmmWXuvU, http://youtu.be/KtkOH5M3_Lc
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—6—Sec—4—4.html

The concept of determinant was first introduced by Japanese Takakazu

determining the existence of roots. It was Cauchy who used the term in

[m] kit [m] Seki-Kowa in 1683. The term determinant originated from the meaning of
1
[=] ;

modern concept in 1815. In this section, we introduce some geometric and

algebraic applications among many other applications of the determinant.

Q By using a determinant, we can easily find areas, volumes, equations of lines,
equations of elliptic curves, or equations of plane. Also, the determinant of
Vandermonde matrix connects between discrete data, which arise from
statistical data and experimental labs, etc.

Show that the equation of a line, which passes through two distinct points
(21, y,) and (x4, yy), is as follows.

1 =z y
1z y1 =0
1 %y Yo

Note that the above equation is degree 1 for both z and y. As the
equation holds by substituting z=2x,, y=y;, and z=u=z,, y=y, into the
equation, the equation must be the equation of the line which passes
through two given points.

(22, ¥2)

lx vy

» 1z v |=0

1z v [ |
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[Remark] Computer simulation

[An equation of a line which passes through two distinct points]
http://www.geogebratube.org/student/m9504

HE Ny HugY W

[ * Lm0 ) ) 3 N e ot
N
Alxyyy) = (175 ,-324 ) ) e
Bi(X,¥,) = (767 ,589 ) ! //'2»
| /
7

-----

-9.13x +9.42y = -14.54 f

-8

Fivnsaiyeansi

e

Q Similar to w an equation of a plane, which passes through three

distinct points  (xq, y1s 21), (T2, Ya, 25), and (x5, y3, 23), is as follows:

lx y 2z

Layy %

Layyy 29|

1 z3 y3 23

(Ig, Yy, 22)
(x1, 41, 21)
1 a2
‘ la oz =)
Lz y, 2
123 ¥y 2

(3, 3, 23)
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[Remark] Computer simulation

[An equation of a plane which passes through three distinct points]

http://www.geogebratube.org/student/m56430

HE NI HRNE KW

-

Consider an arbitrary non-singular square matrix A€ M,. Let 4% be the ith
column and
P(A)= ZtiA(” (0 ;< 1,i=1,2, -, ny.
i=1

For the case n=2 is a parallelogram, and for the case n> 3 is a generalized

parallelepiped.

Parallelogram can be expressed by adding two vectors as follows.

(xl, yl)

The area of the above parallelogram is |x1y2—x2y1| which is the same as the

xra T
e Similarly, a parallelepiped is generated by three vectors

absolute value of
Y1 Yo

which do not lie on the same plane. Let matrix A's columns consist by these

three vectors. Then the volume of the parallelepiped is absolute value of det(4).
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1{{0]]-1
A=||1||2]|2

21111|2

¢l ¢2 ¢3

c1(1,1,2)

1 0—1
detd=11 2 2[=5

21 2

[Remark] Computer simulation

[Volume of parallelepiped]
http://www.geogebratube.org/student/m57553

HY ol s8Ae sso

AL B GO AL N el 2l 3]

BYS BN 2]

Toi-ass

18 0 45
0 3145 |=3794 X A
0 068

det

r 7.17 ) { y axis p3

=)

n‘ﬁ AN,

Tpi=18

"
a

Theorem 4.4.1

(1) Let A be an 2x2 matrix. The area of parallelogram generated by

two column vectors is |det(A)|.
(2) Let A4 be an 3x3 matrix. The volume of parallelepiped generated by

three column vectors is |det(4)l.
(3) The area of parallelogram generated by two vectors u, veER", is

VdetATA , where A =1[u:v].

- 136 -


http://www.geogebratube.org/student/m57553

We will prove only (3).

Note that [u- v|*> = [lull’llvl*cos?6.
Also, the area of parallelogram is llullllvllsinf. Now, the determinant

uTu uTv
T

e = |[ulPIvI* = u”vv'u
viu vlv

detd T4 = det{

= lullPIVI? = ") " v Tw) = lulPlivl? = fu- v)?
= [[ul PIIvII* — [[ullllvl[*cos®8

= |lulPlIvl* (1 — cos?0) = llull’llvll’sin®¢ (square of base times height)

makes the square of the area of the parallelogram generated by u,veER". B

) Show that the area of a triangle generated by three points (z, y;),
(w9, y5), (23, y3) is as follows.
zyyp 1

det|zy yo 1

1
2
T3 ys 1

As the area is not changing by parallel translation, the area of triangle
generated by three given vectors are the same as half of the area of
parallelogram generated by (x,—,,y,—v;) and (x;— =z, y;—v;). Hence,
by Theorem 4.1.1, we have

1 Ty =Ty Yo~ Y1
— |det
2 T3~ 21 Ys— U1

1 Ty yr 1 1 Ty Y 1
=5 det|zo =2 Y2~y 0 :E det|zy y2 11|. W
T3~y Ys— Y1 0 Z3 Y3 1

Vandermonde matrix and the determinants

Q If there are = distinct points in the zy-plane with mutually distinct =z
coordinates, then there exist a unique polynomial which passes through all
given points with degree n—1. Let's find the polynomial.
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Let (zy,9,) (z9, ), -, (x,,9,) be n distinct points in the zy-plane with
mutually distinct z coordinates. We want to find a polynomial of degree n—1
which passes through all given points. Let

y=ay,+ax+aaz’+-+a, 2" ' be such a polynomial.
0 1 2 n—1

Since these n points satisfy the given polynomial, we have

ag + a;zy +a2xf —|—--~—|—an,1x§“1 =1
ao+a1x2+a2x§+-~-+an,1x371 =1,
ag+ayz, +axitota, 2t =
0 1%n 2%n n—1%n Yn -
Moreover, as z;, x4, -+, z, are mutually distinct, the coefficient matrix has
2 n—1
].CEI xl 1
]-CUQ 1,2 xn*l
o2 2 0 .
13371 (E?, (En*l

n

This coefficient matrix V, is called Vandermonde matrix with degree n. Now we

introduce how to compute the determinant of Vandermonde matrix. For the case

n=23,

1 ay z} 111 11 1
detVy= |1 a3 |= det (V)= [T122%3] =|0 2z~ Ty — Ty
125 22 x} z3 ) 02y (@) —2y) 25 (25 — 1)
_ Ly ™ Iy L3 ™ Iy —(z 2 (z ) 11
x2(x2—x1)x3(x3—:r1) : ! ’ Uiy s

1<i<j< 3

Similarly, as we illustrated in the above case, the determinant of Vandermonde
matrix V, with degree n is product of (z;—x;) (with i <j). That is,
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2 —

1z xy xrf 1
2 n—1

1 Ty x5 0 T

— 2 2 —
detV, = : I | (:cj z;) .
: 1< i<j<n
1 T, xi eee wz_l

[Reference] http://www.proofwiki.org/wiki/Vandermonde_Determinant

w Find a polynomial that passes through the points (39, 34), (99, 47), (38,
58) by using a Vandermonde matrix.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

def Vandermonde_matrix(x_list): # generate Vandermonde matrix
n=len(x_list)
A=matrix(RDF, n, n, [[z*] for i in range(n)] for z in x_list])

return A

x_list=[39, 99, 38] # x coordinate
V=Vandermonde_matrix(x_list)

y_list=vector([34, 47, 58]) # y coordinate
print "V="

print V

print

print "x=", V.solve_right(y_list)

V=

[ 1.0 39.0 1521.0]
[ 1.0 99.0 9801.0]
[ 1.0 38.0 1444.0]

x= (1558.34590164, -54.568579235, 0.396994535519)

p=0.396994535519*x"2 -54.568579235*x + 1558.34590164
plot(p, (x, -20, 120)) # plot the graph
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2500 -

000

1500

1000 +

[Remark] Computer Simulation

[Curve Fitting] http://www.geogebratube.org/student/m9911
[Area of parallelogram]| http://www.geogebratube.org/student/m113

Proof without words:
A 2 X 2 determinant is the area of a parallelogram

(a,b+d) (a+c,b+d)

{7

©,d) (a+c,d)

‘ab

[Solomon W. Golomb(Mathematics Magazine, March 1985)]
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. Eigenvalues and Eigenvectors

[ | @ Reference video: http://youtu.be/OlmrmmWXuvU, http://youtu.be/96Brbkx1cQ4
o Practice site: http://matrix.skku.ac.kr/knou—knowls/CLA—Week—6—Sec—4—5.html

For an n Xn matrix 4 and a vector x€ER", Ax is a vector in R". One

[=]trie m] of the important questions in applied problems is “Is there any nonzero
] 1 vector x, which makes both Ax and x parallel?” If such a vector exists,

a3

[=] ¥

then it is called an eigenvector and it plays many important roles in

linear transformation. In this section, we introduce eigenvectors and

eigenvalues.

Definition [Eigenvalues and Eigenvectors]

Let 4 be an nXxXn matrix. For nonzero vector x€R", if there exist a
scalar A which satisfies Ax=Ax , then )\ is called an eigenvalue of
A, and x is called an eigenvector of A corresponding to .

: 21 2111 3 1

@O Lot 4= [12] and x= [1]. Then ax=[12][1]= [ =3!|=sx. ttence 5

an eigenvalue of 4, and x= [1] is an eigenvector corresponding to 3.

1
u

Since I,x=1x, for any x€R", the only eigenvalue of identity matrix 7,
! is A=1. Also, any nonzero vector xE€R" is an eigenvector of I,

corresponding to 1. [ |

o If XER" is an eigenvector of A corresponding to X, then kx is also an

eigenvector of A corresponding to A for any nonzero scalar k.

Ax=Xx = A(kx)=k(4x)=EO\x)= X (kx).
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General method to find eigenvalues

Since
Ax=Xx & Ax=XMx & (M,—A)x=0
and x# 0, the system of linear equations (A, —A4)x=0 should have nonzero

solution. Therefore, the characteristic equation, [\, —A4|=0 should hold.

f4(\)=|M—A]| is called the characteristic polynomial.

Theorem 4.5.1

Let A be nXxXn matrix and ) is a scalar, then the following statements

are equivalent:

(1) X\ is an eigenvalue of A.
(2) X\ is a solution of the characteristic equation det(\Z, —A4)=0.

(3) System of linear equations (M, — A)x=0 has a nontrivial solution.

Find all eigenvalues and corresponding eigenvectors of 4 = B :g]
Ty . L
If x = satisfies Ax= Ax. Then,
2
[5 *6] b _ Ty 5z — 6z = A4 (A=5)x, + 62, =0 (1)
2 —2]|zy| 7|y e 2z, — 2wy = A1y ° — 22, +(A\+2)z, =0

However, as mentioned above, this system of linear equations should

have nontrivial (nonzero) solution. Hence,

‘)\—5 6

= 2— = —_— —_— =
P )\+2‘—0@/\ 30\+2=0e (A—-1)A—2)=0

A=1, 2

@ Let’s find an eigenvector corresponding to A\, =1.

— 4z, + 62, =0 3
From (1), I A xl—Ea:Q—O
oo T38| |3
- X 3:2}_[25]_8[2] (s€r\{0})
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—3:2:1+6:132:0
From (1), — 2z, +4z, =0 <

x= )= [

@ Let’s find an eigenvector corresponding to X\, = 2.

frl_

22,y =0
ﬂ (teRr\{0})

[Remark] Computer simulation

[Visualize the eigenvalues and eigenvectors]

http://www.geogebratube.org/student/b73259#material /11114

@

hf=47a

<1

Do eigenvalues exist for any square matrix?

Theorem

4.5.2 [Fundamental Theorem of Algebral

For any real (or complex) coefficient polynomial with degree n

plz)=a,z"+a, " '+ +az+a
has n roots z,, =y, ..., z,, that is, p(z;)=0 for i =1,...,n, on the complex
plane.
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e That is, a real square matrix A4 with degree n always has n eigenvalues in
complex domain. However, in this textbook we have limited the scalar as real

numbers, and hence there is no eigenvalues means there is no real/ eigenvalues.

1 —3].

Find eigenvalues and eigenvectors of a matrix 4= {_3 1

e http://matrix.skku.ac.kr/RPG_English/4-BN-char_ploy.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

(D Characteristic equation of 4

A=matrix(QQ, 2, 2, [1, -3, -3, 1)) # input A
print A.charpoly() # characteristic equation of A

X2 - 2*x — 8

@ Hence the eigenvalues are as follows.

solve(x*2 - 2xx - 8==0, x)

[x == -2, x == 4]

® We can find the eigenvalues directly by using the built in command.

A.eigenvalues() # eigenvalues of A

(4, -2]

@ In order to find eigenvector for A =—2, solve (A, —A4)x=0.

(-2*identity_matrix(2)-A).echelon_form() # consider only coefficient matrix

[1-1]
[0 0]
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= r,—z,=0 = X:[S]:S[ﬂ (s€eR\A{0})

S

® In order to find eigenvector for A\=4, solve (A, — A4)x=0.

(4*identity_matrix(2)-A).echelon_form() # consider only coefficient matrix

[1 1]
[0 0]

Hence, z;+2,=0 = x= [_ﬂzt[_ﬂ (te R\ {0})

® We can find the eigenvectors directly by using the built in command.

A .eigenvectors_right()

(4, [(1, -DI D, (=2, [(1, DI, D]

# [eigenvalues, eigenvectors(it may appear in different form), multiplicity]
[ |

Find eigenvalues and eigenvectors of a matrix4 =

1 2 2
1 2 —1f.

3—3 0

e http://matrix.skku.ac.kr/RPG_English/4-VT-eigenvalues.html

ERE

=¥

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

(@D Characteristic equation of A4

A=matrix(QQ, 3, 3, [1, 2, 2, 1, 2, -1, 3, -3, 0]) # input A
print A.charpoly() # characteristic equation of A

x"3 - 3xx*2 - Oxx + 27

@ Hence the eigenvalues are as follows.
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solve(x*3 - 3*x*2 - 9*x + 27==0, x)

[x == -3, x == 3]

® We can find the eigenvalues directly by using the built in command.

A eigenvalues() # eigenvalues of A

[-3, 3, 3] # shows root with multiplicity 2

@ In order to find eigenvector for A =—3, solve ()\[;;—A)x: 0.

(-3*identity_matrix(3)-A).echelon_form() # consider only coefficient matrix

[ 1 0 2/3]

[ O 1 -1/3]

[ O 0 0]
:rl-l-%:z:g:() —2r —2

Hence, 1 = xX= rl=r| 1| (reRrR\{0})
x2—§x3=0 3r 3

® In order to find eigenvector for A= 3, solve (A — A4)x=0.

(3*identity_matrix(3)-A).echelon_form() # consider only coefficient matrix

[1-1-1]
[0 O O]
[0 O O]
s+t 1 1
Hence, z,—z,—23=0 = x=| s |=s|1|+t|0
t 0 1

(s and t are real numbers not simultaneously become zero)

® We can find the eigenvectors directly by using the built in command.

A.eigenvectors_right()

(-3, [(1, -1/2, -3/2)]. 1), (3, [(1, 0, 1).,(0, 1, -1)], 2)]
#leigenvalues, eigenvectors(it may appear in different form), multiplicity]
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Q For a triangular matrix 7= [tij] with degree n, the main diagonal components
of \[—T are A\—t;(:=1,2, ..., n). Therefore, the characteristic polynomial of 7
is detO\ = T7)=(A—t;;)(A—ty) - (A—t,,), and hence the eigenvalues of the

triangular matrix 7" are its main diagonal components, i, ty9; ...» tpp-

Find the characteristic polynomial and all the eigenvalues of triangular

2 00
matrix 7=|—1—1 0.
0 13

As detO/— T)=MA—2)(A+1)(A—3), T's eigenvalues are —1,2,3. N

Definition |[Eigenspace]

Let XA be an eigenvalue of nxXn matrix 4. Then the solution space of
the system of linear equations (A, —A4)x=0 is called eigenspace of A

corresponding to .

e That is, an eigenspace of 4 corresponding to X is the set of all eigenvectors of

A corresponding to A and the zero vector, which is a subspace of R".

=

From the given matrix A4 in w find eigenspaces of A4

corresponding to each eigenvalue A\, =3 and A\, =—3.

From the result of w

@ if A\=—3, by solving (A\; — 4)x=0, we have

2
x1+§x3=0 —2r -2

1 = X= rl=r 1 (reRr)
:r2—§:r3=0 3r 3
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W, =<

® When \=3, by solving (AL, —A4)x=0, we have

s+t 1 1
T~ Ty—x3=0 = x=| s |=s|1|+¢ OJ (s, tER)
t 0 1
1 1
wy,=<1|1[.|0]|>
0 1

World Mathematicians

TS S N0 R 7 00 ATy M 3 T P I P G SN St R ea Tt P R ey

A card of World Mathematicians — (@, 4, &, &)

http://matrix.skku.ac.kr/2009-Album/SKKU-Math-Card-F/SKKU-Math-Card-F.html

- 148 -


http://matrix.skku.ac.kr/2009-Album/SKKU-Math-Card-F/SKKU-Math-Card-F.html

e http://matrix.skku.ac.kr/LA-Lab/index.htm
e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

Is permutation (201351087) of S={0,1,2, 3, 5,7,8,10} even or odd?

Find the following determinants.

35 1 2101
(1) detd = 10-—2 (2) detB= 101 1
03 0
301 1
Let Abe n xn matrix and | 4 | =—4, find the followings.
(1) 142
2) 1471
(3) 1241
4) 1(24) Y

For given marices

10 2 120
A=|050|,B=(340
304 005

(1) show |A|=14T].

(2) show |AB| = |Al|B].
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(3) show |41 =

Al

(I For which z and y, the given matrix is invertible?

2 0 0
yr—1 0
1

2 (y—)(z—4)

A=

For given matrices,

0—1—-2 360
A=11 4 1|, B=1|041
2 0—4 015

(1) show |A|=14"].
(2) show |AB| =1A4||Bl.

1

(3) show |4~ Y= Al

Find all cofactors of the following matrices.

1 15]
(1) A=1{3-69
2 6 2
12345
01010
(2 B=|-11-11—1
012 3 4
—42-31 5

Sage -
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A=matrix(QQ, 3, 3, [1, 1, 5, 0, 0, 0, 2, 6, 2])

print "adj A="

print A.adjoint()

B=matrix(QQ, 5, 5, [1, 2, 3, 4,5 0,1,0, 1,0, -1, 1, -1, 1, -1, 0, 1, 2, 3, 4, -4, 2, -3, 1, 5]
print "adj B="

print B.adjoint()

adj B=

adj A=
[-18 36 -18 18 0]

(028 0] [ 14 -28 14 -14 0]

[0 -8 0] [ 22 -44 22 -22 O]

[0 -4 0 [-14 28 -14 14 0] m
[-4 8 -4 4 0]

Find the determinant of the matrix by cofactor expansion.

N O
— =W
= Ot O
— O =N

Find the adjoint matrix adj A of the matrix A4 from (Problem 8).

Find the inverse matrix of the given matrix by cofactor expansion.

1 0135
~13 072
] (2) A=]1 0 218
2 —4003
~8 9 254

(2) Sage : A’lzﬁadj/l

A = matrix(QQ, 5, 5, [1,0, 1, 3,5 -1,3,0,7,2,1,0, 2, 1,8 2 -4,0,0, 3, -89, 2 5, 4]
dA = A.det()

adjA = A.adjoint()

print "(1/dA)xadjA="

print (1/dA)*adjA

- 151 -



(1/dA)*adjA=
[ -18/133 23/133 2/7 -48/133 -29/133]
[ -30/19 13/19 1 -4/19 -4/19]
[ 999/133 -412/133 -27/7 -129/133  80/133]
[ 164/133 -47/133 -5/7 -6/133 13/133]
[-268/133 106/133 8/7 39/133 -18/133]
18 23 2 48 29
133 133 7 133 133
30 138, 4 4
19 19 19 19
1 999 412 27 129 &0
A= 33 "33 7 133 133 -
164 47 5 6 13
133 133 7 133 133
268 106 8 39 18
133 133 7 133 133 |

Solve the systems of linear equations by using the Cramer's rule.

—x—4dy+2z2=2

3r—3y—2z=3
(1)
dx+4y+ z=1

r—y—z—w=0
@) —rx—ytztw=2
rty—z+tw=1
rt+ytztw=1

T, +2xy+ x53=5
(3) 122 +2zy+ 23 =06
T+ 229+ 3253 =9

T, + 2, =4
() Ty + T3 —2x, =1
T, +2z;+ x,=0
T+, + z,=0

Solve the following problems by wusing the determinant of

Vandermonde matrix.

(1) Find the line equation which passes through the two points (—1, 11) and (2, —10).
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(2) Find the coefficients a, b, ¢ of parabolic equation y= az® +bx+c¢ which passes
through the three points (1, 3), (2, 3), and (3, 5).

Solve the following problems by using the determinant.
(1) The area of a parallelogram which is generated by two sides connecting the origin

and
each point (4, 3) and (7, 5).

(2) The volume of parallelepiped which is generated by three vectors, (1, 0, 4),
(0, —2,2), and (3,1, —1).

Find the eigenvalues and eigenvectors of the following matrices.

-3 0 —2 8

[ 3 0 o 1 4 -2
(1)‘4_{—1—2] (2) A= —410—-1—2
6 —4—2 3

Sage : @ det(\[—A4)=0

A = matrix(QQ, 4, 4, [-3, 0, -2, 8, 0, 1, 4, -2, -4, 10, -1, -2, 6, -4, -2, 3])
print "character polynomial of A ="
print A.charpoly()

character polynomial of A =
x4 - 118*x"2 - 168*x + 1485

@ Eigenvalues

[ solve(x*4 - 118+x"2 - 168*x + 1485==0, x)

x == 11, x == -9, x == -5, x == 3]

@ Let x1, x2, x3 and x4 be the above eigenvalues.
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A = matrix(QQ, 4, 4, [-3, 0, -2, 8, 0, 1, 4, -2, -4, 10, -1, -2, 6, -4, -2, 3])
xl =11
x2 = -9
x3 = -5
x4 =3
print (x1*identity_matrix(4)-A).echelon_form()
print
print (x2x*identity_matrix(4)-A).echelon_form()
print
print (x3x*identity_matrix(4)-A).echelon_form()
print
print (x4xidentity_matrix(4)-A).echelon_form()
1 0 0 -9/13]
0 1 0 7/13]
0 0 1 11/13]
0 0 0 0]
1 0 0 2]
0 1 0-1]
00 1 2]
0 0 0 0]
1 0 0 7/5]
0 1 0 7/5]
0 0 1 -13/5]
0 0 0 0]
1 0 0-1]
0 1 0-1]
0 0 1-1]
0 0 0 0]

® Finding eigenvectors

A = matrix(QQ, 4, 4, [-3, 0, -2, 8, 0, 1, 4, -2, -4, 10, -1, -2, 6, -4, -2, 3])
print A.eigenvectors_right()

[1(>1]1, [(1, -7/9, -11/9, 13/9)], 1), (3, [(1, 1, 1, D], 1), (-5, [(1, 1, -13/7, =5/7)], 1), (-9, (1, -1/2, 1, -1/2)],

9
Eigenvectors corresponding to A;=11, Ay=-9, A3=-5, A\=3 are x;= __171 ,
13
2 7 1
—1 7 1
=1 o | X = s X = | [
—1 —5 1

Explain why det A =0 for the following matrix A.

atlat2at+3
at4 a+b at6
at+7 a+8 a+9

A:

Show that for two square matrices A and B, if A= P ' BP for an invertible
matrix P, then |A|=|B].

Al =P BRI =P BIPI = P PIBl =P PIB = 11l = 1B m
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Simplify the following determinant.

(a+ b)2 c e
a’ (b+ c)2 a’
b’ b (c+ a)2

For nxXn matrix 4, with n > 1, show the following identity.

det (adj4) = (det4)" !

(_ZCEEUNEY (et 4 be a 4 X4 matrix, and assume that

2 0 00
0 2 10
0 4 32|
0—2—-12

adj A =

(1) Find det(adj A). Which relation does this value have with det(4)?

(2) Find A.

Sage
adjA=matrix(QQ, 4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 4, 3, 2, 0, -2, -1, 2]
print adjA

print adjA.det() # |ladj Al
B=(adjA.det())*(1/(4-1)) # |Al*(n-1)=|adj Al

print B

C=(1/B)*adjA # AN-1)

print C

print C.inverse() # A

D=matrix(QQ, 4, 4,1, 0,0,0,0,4 -1,1,0, -6, 2, -2,0,1,
print D.adjoint() # adj A

Answers
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adjA= Ar(-1)= A= adjA=
[2 0 0 O] det(adjA)= || 1 0 0 o ([ 1 0 0 0] [2 0 0 O]
[0 2 1 0] |8 [ 0 1 1/2 o0 |[[0 4-1 1] [0 2 1 0]
[0 4 3 2] det(A)=2 [ O 2 3/2 11710-6 2 -2] [0 4 3 2]
[0-2 -1 2] [ 0 -1-1/2 1ffo 1 0 1] |[0-2-1 2]
[ |
By wusing the Cramer's rule, find the degree 3 polynomial
y= az® +ba® + cx +d which passes through the following four points.
(Oa 1)) (1a _1)a (2a _1)a (37 7)
1=d
_ —2=a+b+c
Tl=atbhetd o gat4bt2e
—1=8a+4b+2c+d 6= 270+ 9b+ 3¢
7=27a+9b+3c+d
Sage :
A=matrix(3, 3, [1, 1, 1, 8, 4, 2, 27, 9, 3])
b=vector([-2, -2, 6])
Ai=A.inverse()
print "x=", Ai*b
print
print "x=", A.solve_right(b)
x= (1, -2, -1)
=> g=1,b=—2,c=—1,d=1 ’ y:x3—2x2—x+1 [ |

Let the characteristic polynomial of matrix 4 be p(A) = (A—1)(A—2)%. Find

eigenvalues of matrix 42

Find the eigenspaces of A4 = B i] corresponding to each eigenvalue and

show that they are orthogonal to each other in the plane.

The eigenspace of A corresponding to A=0 is £, = < [
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The eigenspace of 4 corresponding to A=5 is E, = < {1]>.
2

Choose any y,= sx; and y,=tx, from E| and E,, resp., then
<Y, Vo> =< 8X,, 1Xy> = st <X, Xy> = st(2X1—1x2)=0.
=> y, and y, are orthogonal.

FE, and FE, are orthogonal to each other in the plane. |

Find the characteristic polynomial of the following matrix. And find the roots
of the polynomial by using the Sage.

11211
2321
A=1231 21
12231
11117

“If peopledo not believe that
mathematicsis simple, it is only
because they do not realize how
complicated life is.”

John von Neumann 1903—-1957

Foundational Math, Economy, Game Theoty,
Computer Development
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5.1 Lights out Game
5.2 Power Method
5.3 Linear Model (Google)

A mathematical model is a description of a system using mathematical
concepts and language. The process of developing a mathematical model
is called mathematical modeling. Mathematical models are used not only
in the natural sciences (such as physics, biology, earth science,

meteorology) and engineering disciplines (e.g. computer science, artificial - »
intelligence), but also in the social sciences (such as economics, psychology, sociology and political
science). Physicists, engineers, statisticians, operations research analysts and economists use
mathematical models most extensively. A model may help to explain a system and to study the effects
of different components and to make predictions about behaviour.

Mathematical models can take many forms, such as, dynamical systems, statistical models, differential
equations, or game theoretic models. In this chapter, we illustrate linear models, which show how linear

algebra can be used to solve the real world problems, and review the content from previous chapters.

http://matrix.skku.ac.kr/knou-knowls/cla-week-7.pdf
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\ *Lights Out Game

|
[ ] e Reference video: http://youtu.be/_bS33Ifa29s
e ractice site: http://matrix.skku.ac.kr/blackwhite2/blackwhite.html
http://matrix.skku.ac.kr/bljava/Test.html http://matrix.skku.ac.kr/Big—LA/Blackout.htm

The Blackout(Lights Out, Merlin's Magic square) Game, introduced
in the official homepage of the popular movie ‘A Beautiful Mind', is
a one-person strategy game that has recently gained popularity on
handheld computing devices. An animated Macromedia Flash
version of the game can be found from the official website of the
2001 movie "A Beautiful Mind'. In this section, we will introduce the

question-and-answer process by one student that led to further
development of this game, a purely linear algebraic solution and
corresponding software.

Background of The Lights Out Puzzle

In my recent linear algebra class, we discussed the movie 'A Beautiful Mind',
starring Russell Crowe as Nobel Laureate John F. Nash, Jr. (2001) specifically the
scene where Nash was playing the game “Go” with one of his friends. Some of my
students told me that they played 'the Blackout Puzzle' on the Korean official
website of the movie.

http://www.abeautifulmind.com/

Blackout
Game

Blackout

Codebreak

DreEAWoRKS S CJ ENTERTAINMENT

= | e 7

Figure 1: Blackout Game
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One of my students asked me “Can we find an optimal solution for the game?”
and, further, “Is there any possibility that we can not win the game if the given
setting is fixed?” After a couple of days, one of my young students approached me
with a potential solution. Together, we constructed a mathematical model of the
Blackout Game and, utilizing this model, we were able to determine a solution to
the original questions. What we found was that we can, in fact, always win the
game, based on basic knowledge of linear algebra. At that time, the references
about this game were limited, so we developed our own methods; it is these
methods and results that will be explored in this section. Later, the following
website was set up to further explain the puzzle and solutions:
(http://link.springer.com/article/10.1007/BF02896407 and
http://matrix.skku.ac.kr/sglee/album/2004-ICME10SPF/ICME-10-July04.htm).

Infroduction of blackout puzzie

A Blackout board is a grid of any size. Each square takes one of two colors black
or white. (The diagram on the website as in Figure 1 used blue and red.) The
player takes a turn by choosing any square, and the selected square and all
squares that share an edge with it change their colors. The object of the game is
to get all squares on the grid (tile) to be the same color - Black or White. When
you click on a tile, the highlighted tile icons will change or “flip'" from their
current state to the opposite state. Remember, the goal is to change all of the tile
icons to black (or white).

/ / / . . .

e o L
e’ v wy . . .
e R Sy . . '

Figure 2: End of the Game (all squares having the same color)

How to solve any 3x3 game?

The following questions naturally come to mind:
[Q 1.] Is there any possibility that we can not win the game if the given setting is
fixed?

[Q 2.] Given a winning pair (X,,X,), how many solutions are there? When is the

solution unique?
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[Q 3.] Can we make a program to give us an optimal solution (shortest sequence

of moves)?

Note that here are 2x2x---x2=2=512 patterns of 3x3 blackout grid. Among
these 512 patterns, there are 9x2=18 patterns such that we can win the game
with only one more click as follows. (Twice of the following basic 9 patterns as we

can change all initial colors.)

\ N\
‘ . o/ W/

s W y/
DE X BN RN
.00 @ @

DEDN

e

L

Adding some of the above to reach

“ 00O 111
000 or |[111] (mod 2) is
000 111

the goal of the game.

® 06
®

'Y

We checked several examples

.

i

through trial-and-error to convince

us of the answer to the first

T i L/ /
A . . ‘ ‘
/ . ' . .

\ s
/ / . / / /
o " w, o o

Figure 3

\

question regarding any given initial
condition.

The figure 3 illustrates the shortest

e ¢
AN

4

L@

sequence of moves for resolving

possible scenarios on a 3x3 board.

"
N

Our approach to find a winning
strategy was to recognize these 18
patterns in Figure 3.

Then, we tried to make a mathematical model of this game that the only actions
we can perform are 9 clicks (since there are only 9 stones on the board). We
assumed “the white stone = 1 and black stone = 07. Then, we classified effects
of each action as an addition of one vector (or 3x3 matrix). Any series of our
actions results in a linear combination of these vectors. We used modular 2
arithmetic to make the zero vector or all 1's vector (or matrix, resp.) to finish the

game.

110 111 011
llOO},lOlOJ,[OOlL
00O 00O 000
100 010 001
1 10|, (111}, {011],
100 010 001
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000 000 000
100),{010(,]001
110 111 011

Thus, we now have the 9 vectors as shown above (in fact, twice the amount of
them) to consider, which will end the game with just one more click. Assume the
following initial condition, and the following 3 clicks make the entire board all
white. Suppose we have 5 black(blue) stones and 4 white(red) stones in the

board as below.

4} & Beautiful Mind - Microsoft Internet Explorer i 3x 34 Tl =lof x|
| Ble Edt Vew Favortes Tos Help ‘- *20035 & Ol 7wy HEE 22EE
HAHSEAYe 28 E v aE

OFE Abpwizard) & 31

R " ‘
& Done Internet /
] [T e 7

Then, the above condition can be denoted by the following matrix

Now, we choose some of 9 positions to act on it. This can be represented by

110 111 011 100 010 001 000 000 000
a|100[+06[010|+c|001|+d{110|+e|ll1l|+f|011|+g|l100|+A[010|+4|001
000 000 000 100 010 001 110 111 011
thus our problem is to find some a,b,c,d,e,f,¢g,h and ¢ such that
(11 0] [111 011 (10 0] 010
all 00[+b6/0 1 0|+c|0 0 1|+d|1 10[|+e|l 1 1
L0 0 O] L0 00 000 L1 0 0] 010
(1,1) (1,2) (1,3) (2,1) (2,2)
[0 0 1] [0 0 0 000 [0 0 0] 001 000
+fl01 1|+gl1 00|+R|01O0]|+il001]|+]|001|=|000
L0 0 1] 11 1 0 111 L0 1 1] 011 000
(2,3) (3,1) (3,2) (3,3) Initial Final Goal
(1 1 0] (111 011 [1 0 0] 010
all 0 0|+b[0 1 0|+c|0 0 1|+d|1 1 O0|+e|l 11
= L0 0 0] L0 00 000 L1 0 0] 010
(1,1) (1,2) (1,3) (2,1) (2,2)
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001 000 000 000} lOOO} l()()l
+fl01 1|+g|/1 0O0|+hR|01O0|+2{001|=]|000|—]001|=—b
00 110 111 011 000 011
(2,3) (3,1) (3,2) (3,3) Final Goal Initial
R
1
0
110 1
We now consider 3 X 3 matrix 1 00| asa 9x1 vector |0 |, then the above
000 0
0
0
L O]
linar system of equation can be written as
[ a] [0 ] (1 1. 01 0 0 0 0 0]
b 0 111 01 00 0 O
c 1 0 1 1001 0O0O0
d 0 1 00 1 1 01 00
Ax = —b = Ale|=—|0| where 4=|0 1 0 1 1 1 0 1 O
f 1 0 01 01 1 001
g 0 0O 0 01 0 0 1 1 0
h 1 0O 0 0 01 0 1 1 1
L i | [ 1] 0 00001 0 1 1]

We can use any computational tool such as Sage and obtain
[ -1 4 -1 4 -2 -3 -1 -3 6
4 -2 4 -2 1 -2 -3 5 -3
-1 4 -1 -3 -2 4 6 -3 -1
4 -2 -3 -2 1 5 4 -2 -3
1 -2 1 3 1 -2 1 -2
-3 -2 4 5 1 -2 -3 -2 4
-1 -3 6 4 -2 -3 -1 4 -1
-3 5 -3 -2 1 -2 4 =2 4
6 -3 -1 -3 -2 4 -1 4 -1

P
L
|
--\[||—'
I
| ]
f—

Then we have a system of linear equations to find x=[abecde fghill. Ax=—D is
a given (condition) matrix and j is a vector of all 1's. Then RREF(A4)=1, and
rank4d =9. So the columns (rows) are linearly independent, and the system has a

unique solution x = % f% % % % —% —g % —g T. Furthermore. this entire
process can be done in Modular 2 arithmetic and X =
1 —4132—-4-63 —6]". We only need 0 and 1 because clicking 2n+1 times
of one stone is the same as clicking once, and 2n clickings of one stone is the
same as doing nothing. So, our answer for 4Ax = —b, which is a real optimal

winning strategy vector (matrix) 7x = [101100010]7 (mod 2), is
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This shows that if we click on positions (1,1),(1,3),(2,1),(3,2), we will get all white
stones on the board with only 4 clicks. With this idea, one of my students made a
computer program in C++ based on this algorithm to determine an optimal winning
strategy. Let x'= x mod 2. Then x’ is a real optimal winning strategy vector
(matrix) which can be deduced from x. Now, entries of x" are all 0 or 1 as is in
real game situation and we can always find a (0,1) matrix as a real optimal
winning strategy vector(matrix). We can download this program and run it from
http://matrix.skku.ac.kr/sglee/blackout_win.exe. This software also verified our
conjecture and showed the proof was valid.

In the following Figure, the command “(Wizard)” tells us “1 3 4 8, which
indicates which 4 stones we have to click to win. The number ''4" shows we won

with 4 clicks (MOVE).

=0

20034 T G| & T =
H3HISE A 2

|RuLES] [RESET] Db Abpwizard) 2 2t

CJ ENTERTAINMENT

e | .
= =3l Bl =1y
MOVES = 4

|€]bane [ [ ket 7

Teachers often think of "teaching" as a one-sided process, but this experience
shows that teachers and creative students can work together to solve problems in
a mathematically-stimulating, mutually beneficial way. This process can be adapted

to resolve other real world problems using basic mathematical knowledge.

After answering our posed questions for the Blackout Game, we looked toward
finding a relationship between the Blackout Game and automata theory. We started
to introduce the concept of sigma-game and find the optimal strategy to win the
Blackout game, as well as a condition to determine the irreversibility of this game
in larger size boards- up to 19x19. We also verify our algorithm within a

program made in C++,

The sigma-game is played on a directed graph G. We suppose that the vertices
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of G can have one of two different states, which are designated as 0 or 1. A
configuration is an assignment of states to all the vertices, and a move in the
game consists of the player's picking a vertex. The Blackout Game emulates the
sigma-game on the nine point directed graph.

We could classify the reversibility as a direct calculation of the NX /N block
tridiagonal matrix of the blackout game of size n. In fact, for n< 19, there are
irreversible cases when n=4,5,9,11,14,17,19. Using Mathematica and our
eigenvalue method, we can easily show the irreversibility. We could find a way to
reach the goal even for some irreversible case if we give a restriction on the
initial condition b. This complete our generalization of the Blackout game from
3x3 board to the full size Go board. Finally, the following Figure from our

software shows our answer is accurate for larger size boards.

Blackout Algorithm Simulator 2006

| Matrix Edit -

po— ‘
€38 Caxt C55 C66 | |~ pondors O Losdng fid s o Tofo
c @« o .

i R W |

Solution

white solution | black solution

¥ Display humbers
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o0l B | OOOPDD IO |5

[A software of Blackout game on different

sizes with 3 colors]

We made a mathematical model from the well-known Blackout game. Surprisingly,
it turned out to be a pure linear algebra problem of finding the optimal solution of
the game, and we generalized it to the full size Go board. We gave a mathematical
proof and algorithm to solve it which can be extended to the study of
sigma-automata theory.

More details on the blackout game can be obtained from the following links.
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http://matrix.skku.ac.kr/sglee/blackout_win.exe
http://matrix.skku.ac.kr/sglee/blackout_win.zip
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http://matrix.skku.ac.kr/2009/2009-MathModeling/lectures/week12.pdf
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http://matrix.skku.ac.kr/2014-Album/2014-12-ICT-DIY /index.html
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\ *Power Method

[ | o Reference video: http://youtu.be/CLXkZUNJXw

e Practice site: http://matrix.skku.ac.kr/2012—LAwithSage/interact/
http://math1.skku.ac.kr/home/pub/1516/
http://matrix.skku.ac.kr/SOCW—Math—Modelling.htm

In many matrix models of social behavior, the corresponding
maximum eigenvalue gives adequate information to predict the
model. Hence, often finding the maximum eigenvalue is enough to
solve the corresponding problem. However, if the size of a matrix
is significantly large, even with a computer, it is difficult to find all

eigenvalues explicitly. Hence for a large scale matrix, we look at a

new method which finds onl/y the maximum eigenvalue instead of

a finding all the eigenvalues. This method, which harnesses the
power of the matrix, is called “Power Method”. The first goal of
this section is to explain how we can find the maximum eigenvalue
numerically. The second goal is to show how this can be applied to

the Google search engine.

We know that finding eigenvalues of an nXxXn real square matrix amounts to
finding roots of its characteristic polynomial of degree n. However, for n large,
finding the roots of n-th degree polynomial is not an easy task. Also finding

numerical roots for a large degree polynomial is sensitive to rounding off errors.

In this article, we discuss numerical methods to approximate a largest or
dominant eigenvalue of a matrix if exists. The dominant eigenvalues of a matrix
have several applications in science, engineering and economics. Google uses it
for page ranking the web pages and Twitter uses it to recommend users
“WHO-TO-FOLLOW™ (WTF).
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Definition

Let A, ..., A\, be the eigenvalues of an nxn real matrix A. Then )\, is

called a dominant eigenvalue of A4 if |\[> [)\] for all i=2, ...n.

The eigenvector corresponding to the dominant eigenvalue is called

the dominant eigenvector.

[Remark] Note that not every matrix possesses a dominant eigenvalue.

ool

do not have dominant eigenvalues.

For example, matrices

oo w
S wo
N OO
[

Power Method

Let 4 be an nXxXn real matrix. The power method is a numerical approach to
find the dominant eigenvalue and the corresponding dominant eigenvector. We
assume the following two conditions:

® The dominant eigenvalue is a real number and its absolute value is strictly
greater than all the other eigenvalue.
® 4 is diagonalizable, in particular A has n linearly independent eigenvectors.

Let A have n linearly independent eigenvectors x,, ..,x, and eigenvalues are

n
orders as
<ol < Il < AL

Now we start with any nonzero vector x”=R"and we continually multiply x\0) by
(1) ) (k

A which generates a sequence of vectors x ,x<2 y s X ), where
xF T = Ax® k=0,1,2, ..
This implies A*) = Ax"* 1 = 4%~ =...= g *x),
Since 4 has n linearly independent eigenvectors x,, ...x,, there exist scalars
¢1y ...»c,such that
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(0)

XU =X Xy ot e X,

Multiplying both sides by A*, we get

xF) = 4 Fx0) = ECiA kxi

i=1
o

Xy 2ZaG\ N

i=2 1

n k

k k

= Z CAX= A
i=1

X;

1

<1. Thus as k- oo, )\——v 0. Hence
1

Since A; > A\, for all i>1, the ration \
1

)
7 T~ aXp-
1

This leads to one of the very important method of finding the dominant eigenvalue

and eigenvector, namely the “Power Method”.

While applying the power method algorithm, we make sure that the largest
component each of x'*) is unity, in this case the component of x**" = Ax™ will
have largest component of absolute value of .

Power Method Algorithm

[Step 1] Select the a vector x(© having largest component as 1.
[Step 2] Set k=0.
[Step 3] Find y*) = A4x'").

[Step 4] Define ¢, to be largest component in absolute value in the vector <),

[Step 5] Define xFHD = Ciy(k).

k
[Step 6] Check if the convergence criteria is met. Otherwise
[Step 7] Set k=k+1 and go the the step 3.

Let us find the dominant eigenvalue and the corresponding eigenvector
4 —5
2 —3

Iteration 1. We have

(0) _ 0] (1) — 4o(0) — [* 5.0000] _ (1) _ [1.6666]
X [ ¥ = A —3.0000]" 4 =% X 1.0000] "

] , starting with x\0) = [ 0 } .

of the matrix 4 = [ 1
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Iteration 2.

(2) — 45 — [1:6666) (2) _ [1.0000]
y Ax 0.3333) ¢y, = 1.6666, x 10.2000] -
Iteration 3.
(8) — gyl2) — [1:6666] (3) _ [1.0000]
yo =dx 1.4000] ¢ — 1:6666, x 10.4600] -
Iteration 4.
(1) _ 4o(3) _ [1.6666] = _ (4) _ [1.0000]
v = AT = 600 €1 T 1:6666, 0= 1 0600 -
Iteration 5.
(5) _ qo(4) _ 2.2000] _ (5) _ [1.0000]
yuEAx = [0.92000 » 65 = 2:2000, X0 = 1 4987
Iteration 6.
(6) — 44(3) — 1.9090] _ <6):[1.oooo]
yoEAx [0.74545 » ¢ = 19090, x 0.39047] "

Continuing this way the 10th iterate is

(10) — 4(9) = [1.99415

~ 10.79649

1.0000 ]
y .

= (10) —
]’ ¢ = 1.9915, {0.399417
Clearly it means the dominant eigenvalue is approaching to 2 and the

1.0]_

corresponding dominant eigenvector is approaching to {O 40

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

from numpy import argmax,argmin
A=matrix([[4,-5],[2,-3]])
x0=vector([0.0,1.0]) # Initial guess of eigenvector
maxit=20 # Maximum number of iterates
dig=8 # number of decimal places to be shown is dig-1
to0l=0.0001
# Tolerance limit for difference of two consecutive eigenvectors
err=1 # Initialization of tolerance
i=0
while(i<=maxit and err>=tol):

y0=A*x0

ymod=y0.apply_map(abs)

imax=argmax(ymod)

cl=y0[imax]

x1=y0/cl

err=norm(x0-x1)

i=i+1
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x0=x1

print "Tteration Number:", i-1

n_n n_n n_n

print "y'+str(i-1)+"=",y0.n(digits=dig), "c"+str(i-1)+ cl.n(digits=dig),

n_n

x'+str(i)+"=",x0.n(digits=dig)

n_n

print 'n

[teration Number: 0

y0= (-5.0000000, -3.0000000) cO= -5.0000000 x1= (1.0000000, 0.60000000)
n

[teration Number: 1

y1= (1.0000000, 0.20000000) cl= 1.0000000 x2= (1.0000000, 0.20000000)
n

[teration Number: 2

y2= (3.0000000, 1.4000000) c2= 3.0000000 x3= (1.0000000, 0.46666667)
n

[teration Number: 3

y3= (1.6666667, 0.60000000) c3= 1.6666667 x4= (1.0000000, 0.36000000)
n

[teration Number: 4

y4= (2.2000000, 0.92000000) c4= 2.2000000 x5= (1.0000000, 0.41818182)
n

[teration Number: 5

y5= (1.9090909, 0.74545455) c5= 1.9090909 x6= (1.0000000, 0.39047619)
n

[teration Number: 6

y6= (2.0476190, 0.82857143) c6= 2.0476190 x7= (1.0000000, 0.40465116)
n

[teration Number: 7

y7= (1.9767442, 0.78604651) c7= 1.9767442 x8= (1.0000000, 0.39764706)
n

[teration Number: 8

y8= (2.0117647, 0.80705882) c8= 2.0117647 x9= (1.0000000, 0.40116959)
n

[teration Number: 9

y9= (1.9941520, 0.79649123) c9= 1.9941520 x10= (1.0000000, 0.39941349)
n

[teration Number: 10

y10= (2.0029326, 0.80175953) c10= 2.0029326 x11= (1.0000000, 0.40029283)
n

[teration Number: 11
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y11= (1.9985359, 0.79912152) c11= 1.9985359 x12= (1.0000000, 0.39985348)
n

[teration Number: 12

y12= (2.0007326, 0.80043956) c12= 2.0007326 x13= (1.0000000, 0.40007323)
n

[teration Number: 13

y13= (1.9996338, 0.79978030) c13= 1.9996338 x14= (1.0000000, 0.39996338)
n

Iteration Number: 14

y14= (2.0001831, 0.80010987) c14= 2.0001831 x15= (1.0000000, 0.40001831)
n |

) Let us find the dominant eigenvalue and the corresponding eigenvector

1 -3 3 1
of the matrix A=|3 —5 3|, starting with x'* = [1].
6 —6 4 1
Iteration 1. We have
1.00000 [0.25000
x" =(1,1,1), v = 4x'Y = [1.00000|, ¢; = 4.0, x'") = [0.25000.
4.0000 [1.00000
[2.25000] 1 [0.62500
Iteration 2. y* = 4x" = {2.25000(, ¢, = 4.0, x*) = —y* = [0.62500] .
| 4.0000 | C2 [1.00000
[1.75000] ‘ . [0.43750
Iteration 3. y* = 4x® = [1.75000(, ¢; = 4.0, x*) = —y®) = [0.43750] .
| 4.0000 | €3 [1.00000
~ [2:12500] ) [0.53125
Iteration 4. y*) = A4x®) = [2.12500], ¢, = 4.0, x'*) = —y'*) = [0.53125].
| 4.0000 | € [1.00000
Continuing this, the 10th iterate is given by
2.00195 ) 0.50048
y1 = 4% = [2.00195|, ¢,y = 4.0, x¥) = =y = 10.50048] .
4.0000 €10 1.00000

Clearly it means the dominant eigenvalue is approaching to 4 and the
0.5

0.5
1.0

corresponding dominant eigenvector is approaching to

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

from numpy import argmax, argmin
A=matrix([[1,-3,3],[3, -5, 3],[6,-6,4]])
x0=vector([1.0,1.0,1.0]) ## Initial guess
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maxit=20 # Maximum number of iterates
dig=8 # number of decimal places to be shown is dig-1
to1=0.00001
# Tolerance limit for difference of two consecutive eigenvectors
err=1 # Initialization of tolerance
i=0
while(i<=n and err>=tol):
y0=A*x0
ymod=y0.apply_map(abs)
imax=argmax(ymod)
cl=y0O[imax]
x1=y0/cl
err=norm(x0-x1)
i=i+1
x0=x1
print "lteration Number:", i-1

n_n n_n

print "y'+str(i-1)+"=",y0.n(digits=dig), " c"+str(i-1)+"=", cl.n(digits=dig)

print "x"+str(i)+"=",x0.n(digits=dig)

n_n

print n

[Remark]
A

The rate convergence of the power method is determined by the ration h
1

Smaller is the ratio better is the convergence.

Consider matrices Az[l 2],32[ L7 _0'4], C= [1 2].

3 4 0.15 2.2 3 4

Starting with arbitrary vector x\0)

observe that for A convergence is
obtained in fewer iterates, for B the convergence requires many more

iterates where as for C there is no convergence.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

Mat=['A"','B",'C"]

from numpy import argmax,argmin

@interact

def _QRMethod(Al=input_box(default="[[1,2],[3,4]]', type = str, label =
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'A'"),Bl=input_box(default="[[1.7,-0.4],[0.15,2.2]]', type = str, label =
'B"),Cl=input_box(default="[[1,2],[-3,4]]'", type = str, label =
'C'),example=selector(Mat,buttons=True,label='"Choose the
Matrix'),maxit=slider(1, 500, 1, default=100, label="Maximum no. of
iterations"),tol=input_box(label="Tolerance",default=0.001),v=
input_box([0.1,1.0])):
if(example=="'A"):
Al=sage_eval(Al)
A=matrix(A1)
elif(example=='B'):
Bl=sage_eval(B1)
A=matrix(B1)
elif(example=="'C"):
Cl=sage_eval(Cl)
A=matrix(C1)
x0=vector(v)
html('A=%s,~~ x_0=%s'%(latex(A),latex(x0)))
#html('x_0=%s'%latex(x0))
#x0=vector([0.0,1.0])
i=0
err=1
while(i<=maxit and err>=tol):
y0=A*x0
ymod=y0.apply_map(abs)
imax=argmax(ymod)
cl=y0[imax]
x1=y0/cl
err=norm(x0-x1)
print "Tteration Number:", i+l
html('y_i=%s,~~ c_i=%s~~ x_i=%s'%(latex(y0),latex(c1),latex(x0)))
i=i+1
x0=x1
if(i==maxit+1):
print 'Convergence is not achieved'
else:

print 'The number iteration required for tolerance=',tol,'is:',i

[Remark] nonzero smallest eigenvalue
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To find the non zero smallest eigenvalue of a matrix A, we can find the dominant

eigenvalues of A4 !

[Remark] shifted power method

Note that if M\ is an eigenvalue of 4 then A—o¢ is an eigenvalue of 4—o¢/ The
rate of convergence of a power method can be significantly improved by using a
shifted matrix A4— o/ rather than A4 in the power method. This method is called
the shifted power method.

Inverse Power Method

In case, a reasonably “good approximation” of an eigenvalue is known, then we
can use the “inverse power method” to find an eigenvalue and the corresponding

eigenvector.

Let o be an approximation to an eigenvalue A; such that |\, —ol <« |\,—o| for all
1=2,3, ... That is, ¢ is much closer to A; than to the other eigenvalues. Then we

have the following algorithm

Inverse Power Method Algorithm

[Step 1] Select an initial estimate o sufficiently close to A,.

[Step 2] Select the a vector x°) whose largest entry is 1.

[Step 3] Set k=0.

[Step 4] Solve (A4—oD)y" =x" for y*).

[Step 5] Define ¢, to be largest component in absolute value in the vector x
1

[Step 6] Find d, = o+ —
k

()

[Step 7] Define x"*!) = Ciyw
k

[Step 8] Check if the convergence criteria is met. Otherwise
[Step 9] Set k=k+1 and go the the step 4.

In the above algorithm d, converges to A\, and x) converges to the corresponding

eigenvector.

The inverse power method is also know as inverse iteration with shift method.
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[Remark]
Note that the inverse power method is nothing but the power method applied to

the matrix (4—o7)"!. This is why the name.

10 —8 —4
Consider the matrix A=[—8 13 5. Suppose ¢ =1.8 is an estimate
—4 4 4

of an eigenvalue of A. Apply the inverse power method to approximate

an eigenvalue of A starting with x\*) = [ 1 ]

1
3.02739
Iteration 1. v = (4—oD) ¥ = |—3.80292;
13.48630
1 0.22448
¢y = 13.48630, d, = 1.97414, x'*) = —y'* = |- 0.28198] .
“ 1.0000
1.74935
Iteration 2. ") = (4— oD~ 'x"V = |-3.38069 |;
10.24772
1 0.17071
¢, =10.24772, d, = 1.99758, x*) = —y1) = |- 0.32989] .
@ 1.0000
1.67240
Iteration 3. v = (U4—oD)" 'x®) = |—3.336698|;
10.01733
1 0.16695
¢, = 10.01733, d, = 1.99983, x*) = =y = [~ 0.33309] .
€2 1.000
Continuing this way, we have Iteration 10.
( 1.66666
v =(U-on %) = |-3.333333|;
10.0000
0.166666
¢y = 10.24772, dy = 1.999999, x'* = |- 0.333333] .
1.000
This mean an approximate eigenvalue is 2 and the corresponding
1/6
eigenvector converges to [1/3].
1

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

from numpy import argmax, argmin
A=matrix([[10,-8,-4],[-8,13,5],[-4,4,4]])
Id=identity _matrix(3)
x0=vector([1.0,1.0,1.0]) ## Initial guess

maxit=20 # Maximum number of iterates
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dig=8 # number of decimal places to be shown is dig-1
tol=0.00001
# Tolerance limit for difference of two consecutive eigenvectors
err=1 # Initialization of tolerance
sig=1.9 # Initial Shifting number
i=0
while(i<=n and err>=tol):
y0=(A-sig=*Id).inverse()*x0
ymod=y0.apply_map(abs)
imax=argmax(ymod)
cl=y0O[imax]
dl=sig+l/cl
x1=y0/cl
print "Tteration Number:", i+l
print "y"+str(i)+"'=",y0.n(digits=dig), "d"+str(i)+"=", d1.n(digits=dig)
print "x"+str(i+1)+"=",x0.n(digits=dig)
print 'n"
i=i+1
x0=x1

[Remark]

The advantage of the inverse power method with shift is that it can be adopted to
find any eigenvalue of a matrix, instead of the extreme ones. However, in order to
compute a particular eigenvalue, we need to have an initial approximation that of

that eigenvalue.

Rayleigh Quotient

The Rayleigh quotient of a non zero vectors x with respect of a matrix is
defines as

xTAx
r(x) ==
XX

If x is an eigenvector with respect to the eigenvalue A, then r(x)=\.

In general, for an arbitrary x, r(x) is value that minimizes the function
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f(A)= Il Ax—Ax || ? over real number .

The inverse power method can be significantly improved if we drop the restriction
that the shift value ¢ remains constant in all the iterates.

Each iteration in the inverse power method gives and approximation of
eigenvector, given an estimation of eigenvalue. On the other hand, the Rayleigh
quotient gives an approximate eigenvalue, given as estimate of an eigenvector.
Combining the two concepts together, we get a new variation in the inverse power
algorithm in which the shift value ¢ is updated in each iterate and it becomes the
Rayleigh quotient of the eigenvector estimates. This method is called the Rayleigh
quotient iteration method (RQI).

Rayleigh Quotient Ilteration Algorithm

[Step 1] Select the a vector x with x| =1.

[Step 2] Define A\ =(x") = (x?)"4x"".
[Step 3] Set k=1.
[Step 4] Define A*~ 1) = p(xF V)= (x""= 1) 745k~ 1,
[Step 5] Solve (A—\F~V )y =xE=1 for 3B
(k)

[Step 6] Define L —

Iy
[Step 7] Check if the convergence criteria is met. Otherwise
[Step 8] Set k=k+1 and go the the step 4.

One of the main advantage of the RQI is that it converges much faster than
power method and inverse power method. However, a very significant disadvantage
of RQI is that its convergence is not always guaranteed except when the matrix is
symmetric.

Apply the Rayleigh quotient iteration method to find an eigenvalue of the

10 —8 —4
matrix A=| —8 13 5} starting with initial approximate vector
—4 5 4
1.5
x(0> = |—2.5].
5
1.5
Iteration 1. x) = |[—2.5|and normalize x'” to get
5
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) 0.259160527674408
x0) =TT —0.431934212790680 | .
X 0.863868425581360

Now A\ =(x9)= (x)74x") = 2.35074626865672.
—0.253865948919549
Solving (4= XYy =% for vV we get, vV = | 0.444271881412964 |.
—1.43880515900300
—0.166242289108663

0.290928243299417
—0.942191200639566

Iteration 2. AV = r(x)= (x")7ax" =1.7072489.

oYY
D

Hence x 0
[y

201.04056
Solving (A4 - YDy? =x1) for y? we get, y?) = l—367.87171}
1152.5798
) 0.16392031
Hence x?) = —Y——=|—0.20094765 .
Iy 0.93976675

Iteration 3. \?) = r(x?))= (x*))74x® = 1.7064336.
Solving (4— XYy =x2) for y*) and then we have

3) —0.163923
x3) = %z 0.299945 }
Iy 1 —0.939767
—0.163923
Iteration 4. \?*) =1.70643 and x¥) = [ 0.299945 }
—0.939767

Clearly, in 4 iterates we are getting reasonably accurate eigenvalue

—0.163923
0.299945 |.
—0.939767

A=1.70643 and the corresponding eigenvector

Other Eigenvalues

We can use different initial vectors x'° to get a different eigenvalues
and the corresponding eigenvectors.

1.0
For example if we use x\0) = l 0 |, then after 4 iterates we have
0
‘ —0.783163
A =3.36758, x") = | —0.618827 |.
—0.0609041
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1.0
If we use x\°) = [— 1|, then after 4 iterates we have
—1
—0.599821
A®) =921.0259, x" = 0.726007 |.
0.336346

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

A=matrix([[10,-8,-4],[-8,13,5],[-4,5,4]])

Id=identity _matrix(3)

x0=vector([1.5,-2.5,5])

#x0=vector([1.0,0.0,0.0])

#x0=vector([1.0,-1,-1])

x0=x0/norm(x0)

maxit=20 # Maximum number of iterates

dig=8 # number of decimal places to be shown is dig-1

tol=0.00001

# Tolerance limit for difference of two consecutive eigenvectors

err=1 # Initialization of tolerance

i=0

while(i<=n and err>=tol):
lam0=x0.dot_product(A=*x0)
y0=(A-lamO=Id).inverse()*x0
x1=y0/norm(y0)
print "lteration Number:", i+1
print "y"+str(i)+"'=",y0.n(digits=dig), "lambda"+str(i)+"=", lam0.n(digits=dig)
print "x"+str(i+1)+"=",x0.n(digits=dig)
print "n"
i=i+1
x0=x1

QR Method

The QR method for finding eigenvalues and eigenvectors is a simultaneous
iteration method that allows us to find all eigenvalues and eigenvectors of a real,

symmetric full rank matrix at once.
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The algorithm is simple:

® We start with 4V =4,
® Set k=1 and find the QR factorization QW Rr" = 4=1)
® Let AW=RMQW,

The sequence A" has the following properties: for each k, A% s orthogonally

1

equivalent to A%V and hence is orthogonally equivalent to the original matrix A4.

A(1):R(0)Q(U): (Q(U))TA ([))Q(()) since R(o): (Q(()))TA (0)'

Similarly,
A(Z): R(UQ(U — (Q(]))TA(])Q(]).

It can be shown that the sequence AW converges (under certain conditions) to an

upper triangular matrix or quasi-triangular matrix. In particular, the diagonal

entries of 4" are eigenvalues.

If we define
~ (k)

Q = Q(I)Q(Q) Q(k)

Then the columns of @(k) converges to unit eigenvectors of 4.

Similarly we can define

10.0 3.0 4.0
3.0 5.0 1.0
4.0 2.0 3.0

13.1804689044, 3.56330346867, 1.25622762694.
Now we apply the QR-method.

Consider A4 = . The actual eigenvalues of A are

Iteration 1. 4= QYR We have
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—0.894427191 0.314676219522 — 0.31777173705
Q") = |—0.2683281573 — 0.946058827723 — 0.181583849743 | .
—0.3577708764 — 0.0771464280117 0.930617229931

—11.1803398875 — 4.7404641123 — 4.9193495505
RO = 0.0 —3.94055833607 0.0812067663282 | .

0.0 0.0 1.33918089185

13.032 1.34608107814 — 0.164443701815
AV =ROQO =1 102830934109  3.72173518805 0.791114168732 |.
—0.479119921336 — 0.103313022268 1.24626481195

Iteration 2. A= Q(I)R(l). We have

—0.996232453991 0.0790956260904 0.0355637392449
—0.0786092033716 — 0.996794511229 0.0148760051455
0.0366263670188 0.0120243219007 0.999256686203

—13.0812843406 — 1.63735627471 0.147281450427
0.0 —3.60457835109 — 0.786599549427
—0.0 —0.0 1.25125883164

13.1661056568 0.599206332142 — 0.342404731552
AP = W QW = 10.254542748875 3.58356558947 — 0.839636585227
0.045829065203 0.0150455389727 1.25032875368

Q(l):

R(1>:

Iteration 3. 4% = QY R® We have

—0.999807111701  0.0193418421557 —0.00341065019922
—0.0193294552839 —0.999806585683 — 0.00362813765143
—0.00348016539642 — 0.00356151181562  0.999987601964

—13.1686457345 — 0.668411484034 0.354217052652
0.0 —3.57133630715 0.82839838859
0.0 0.0 1.25452739194

13.1777929528  0.412314788263 0.401551394126
AP =RP oD =1 0.0661490220464  3.56769520893 0.841345417799].
—0.00436596281828 — 0.0044680141294 1.25451183826

Q<2):

R(2>:

Continuing this iterations, in 20th iterate we have A (19) — Q(lg)R“g).
We have
-1.0 3.99321544727 < 10~ '21.50791309447 < 10~ %
Q" = |- 3.99321544727 x 10~ 12 ~1.0 6.8298793812 % 10~ !
1.53518627432 > 10" 2° 6.8298793812x 10 ! 1.0
—13.1804689044 — 0.345707260572 — 0.41234692193
R = 0.0 — 3.56330346876 — 0.842885819939
-0.0 -0.0 1.25622762691
420 = p(19) o(19)
13.1804689044 0.345707260491  —0.412346921953
= [1.42290384418 x 10~ ! 3.5633034687 —0.842885820182
1.92854341025 % 10~ 2°8.57988316715 < 10~ ' 1.25622762691

Clearly, diagonal entries of A are close to actual eigenvalues of 4.
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A=matrix(RDF, [[10,3,4],[3.5,1],[4,2,3]])
print "The actual eivenvalues of A are"
ev=A.eigenvalues()
show(ev)
n=10
for i in range(n):

Q1,R1=A.QR()

print "[teration Number", i

ne
-

print "The matrix Q"+str(i), "is

show(Q1)

print "The matrix R'+str(i), "is"
show(R1)

A1=R1xQ1

print "The matrix A"+str(i), "is"
show(A1l)

A=Al

[Remark]

QR method mentioned above wusually is very expensive. This is why usually,
symmetric matrices are first converted to tridiagonal matrix and then we apply QR
method. For non-symmetric matrix, we convert it to an upper Hessenberg matric

and then apply QR method.

http://www.prenhall.com/bretscherle/html/proj10.html
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*Llnear Model

5 3 o Reference video: http://youtu.be/CLXkZUNJXw

@ Practice site: hittp://matrix.skku.ac.kr/2012—LAwithSage/interact/
http://math1.skku.ac.kr/home/pub/1516/
http://matrix.skku.ac.kr/SOCW—Math—Modelling.htm

(1) Linear Algebra behind Google

http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf
by Kurt Bryan and Tanya Leise

What do we REALLY
know about PageRank?

Google’s success derives in large part from its PageRank algorithm, which ranks
the importance of webpages according to an eigenvector of a weighted link matrix.
Analysis of the PageRank formula provides a wonderful applied topic for a linear
algebra course. Instructors may assign this article as a project to students, or
spend one or two lectures presenting the material with assigned homework from
the exercises. This material also complements the discussion of Markov chains in
matrix algebra. Maple and Mathematica files supporting this material can be found
in http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf.

A newsletter article '“‘Linear Algebra and Google Search Engine” - Pagerank

algorithm' in Korean also can be found in
http://matrix.skku.ac.kr/2012-e-Books/KMS-News-LA-Google-SGLee.pdf.
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(2) Sage Matrix Calculator for Linear Algebra

“““““ s In this section, we introduce a matrix calculator. By utilizing a free

¢ & open source tool Sage, one can intuitively understand almost all
'4’ ‘5“

concepts in linear algebra. Also, one can study with visualization

. s and large scale computation. Moreover, one can easily change and

\\\ 4} expand the size of a matrix.

Sage Matrix Calculator
http://matrix,.skku.ac.kr/2014-Album/MC. html

For over 20 years, the issue of using an adequate CAS tool in the teaching and
learning of linear algebra has been raised constantly. A variety of CAS tools were
introduced in many linear algebra textbooks; however, in Korea, due to some
realistic problems, these tools have not been introduced in the class and the
theoretical aspect of linear algebra has been the primary focus in Linear Algebra

courses.

In this section, we suggest Sage as an alternative for CAS tools to overcome tthe
problems mentioned above. As well, we introduce the extensive linear algebra
content and a matrix calculator that was developed with Sage. Taking advantage of
these novel tools, almost all concepts of linear algebra can be easily covered, and
the size of matrices can be expanded without difficulty.

The Sage Matrix Calculator uses the Sage Cell server. As shown in the following
picture, it can do not only basic operations, such as matrix addition, subtraction,
multiplication, scalar multiplication, but also can find determinant, rank, trace,
nullity, eigenvalues, characteristic equation, inverse matrix, adjoint matrix,
transpose of matrix, and conjugate transpose of a matrix. Also, unlike most
web-based open matrix calculators, it can perform LU, SVD, and
QR-decomposition, which are quite essential to a well-rounded linear algebra
education. By selecting the column size as 1, it can perform vector operations,
such as inner product, cross product, and norm. As well, by using the column
vectors of a matrix, it can perform Gram-Schmidt orthogonal process, and as a
result, one can find the basis of a vector space generated by the matrix. As this
matrix calculator can cover complex numbers, while many other matrix calculators
can handle only real or rational numbers, it can solve almost all problems in
linear algebra. In order to use the Sage matrix calculator, one needs only to

connect to the given URL, or simply copy the codes from the given URL and paste
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C [ sageskku.edu/static/mehiml
SKKU Sage Matrix Calculator

(Deserming the size of mandn,)

=

Rows
Codumng

AL §

£0 30
A -1.0 F0
Choose.D(a  [7]

50 50
i an a0
Operation | MatiPropertes [«

-0
K a0
nork= 1

50 -3.0
a= (—1.{: —m)

Ais square? True

Ais nilpatent? False
Ais symmetic? False
Ais invertible? True

A is Hemmitian? False
Ais Skew-Hermitian? False
A is unitary? False

Pawerad by 5@

Copyright @ 2012 SKEL Matrix Lab, Made by Manages: Prof, Sana-Gu Lee with Hee-Dong Yoon, Jae Hwa Lee. Kyung-Won Kim

them to other Sage Cell server or a general Sage server's worksheet. Once it
executed, decide the size of the matrix, enter the elements of the matrix, and then
perform the desired matrix operations.
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Visualization of Linear Algebra Concepts with GeoGebra

Linear Algebra

1. SKK-Vectar Sum

2. SKKU-Sealar Multiplication
3, SKKU-Area of tiangle
4. SKKU-Projection

§. SkKU-Linear Equation
6. SKKU-Rotation

7. BKKL-Lingar Transfarmation
8

Si-System of Linear
Equations

9. SKKU-Diation
10, SKKU- Linear Transformation
11, SKKU- Curve Fitting
12. SKKU- Linear Transformation
13. BKIU- Linear Transformation
14. BKKU- Ditation

15 g‘K}iU) Matris Multiplication (22

SKKU- Least Square Line
SkiL-Plane Equation
SKKU-Linear Combination
SKKL-Volume of paralielepiped
20, SKKU-Matrix Transformation

21, SKKkU-Gram Schrmidt
orthonormalization process

22. Marix transformations and
eigenvalues

23, Power Method
24 0IRH& &l(quadratic form)
25, SKRKU-Markoy chain

K Linear Algebra

SKKU-Matrix-Lab 2014, 5. 25

Linear Algebra

1. SKKU-vector Sum

7 8KKU-Linear Transformation

13 SKIKU- Lingar Transformation

‘/ - A

2 SKKU-Scalar Multiplication

3 SKKU-Area of triangle 4. SKKU-Projection

8. BKKU-Bystem of Linear 9 SKKU-Dilation

Equations

SikU- Matri Multiplication (2

14 SKKU- Dilation 15
293

10. BKKU- Linear Transformatior

16, 5KKL- Least Square Line

http://www.geogebratube.org/student/b121550

Vector addition

http://www.geogebratube.org/student/m9493

Sclar multiplication

http://www.geogebratube.org/student/m9494

L. S. of Equations

http://www.geogebratube.org/student/m9704

Matrix product

http://www.geogebratube.org/student/m12831

Areas http://www.geogebratube.org/student/m9497
Equations http://www.geogebratube.org/student/m9504
Curve Fitting http://www.geogebratube.org/student/m9911
Linear Transformation | http://www.geogebratube.org/student/m9702
Projection http://www.geogebratube.org/student/m9910
LT (Shear) http://www.geogebratube.org/student/m9912
o w3t http://www.geogebratube.org/student/m9703
LT(similarity) http://www.geogebratube.org/student/m9705
Triangles http://www.geogebratube.org/student/11568
Projections http://www.geogebratube.org/student/m9503

Least Square solution

http://www.geogebratube.org/student/m12933

http://matrix.skku.ac.kr/2012-Album/CLA-GeoGebra-Dynamic-Visual.htm
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17, GKKU-Plane Equatio
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6.1 Matrix as a Function (Transformation)

6.2 Geometric Meaning of Linear Transformations

6.3 Kernel and Range

6.4 Composition of Linear Transformations and Invertibility
6.5xComputer Graphics with Sage

Exercises

So far, we have considered matrix mainly as a coefficient
matrix from systems of linear equations. Now, we consider

matrix as a function.

We have observed that the set of vectors and two
operations reborn as an algebraic structure, namely a vector space. Matrix will be
reborn as a linear transformation, which is a function that preserves the
operations in a vector space. And linear transformations are used for noise
filtering in signal processing and analysis in engineering processes.

We show a linear transformation from n-dimensional space R" to m-dimensional
space R™ can be expressed as a m xXn matrix 4. We shall also look at geometric

meaning of linear transformations from R? to R? and applications in computer
graphics.
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@ Reference video: http://youtu.be/YF6—ENHTfI6E, hitp://youtu.be/Yr23NRSpSoM
o Practice site: http://matrix.skku.ac.kr/knou—knowls/cla—week—8—Sec—6—1.html

6 1 \‘ Matrix as a Function (Transformation)
|

Matrix can be considered as a special function with linearity property.
Such a function play an important role in science and various areas in

daily life, such as mathematics, physics, engineering control theory,

image processing, sound signal, and computer graphics.

What is a Transformation?

Definition

A function, whose input and output are both vectors, is called a
transformation. For a transformation 7 : R"- R™, w= 7(x) is called

an image of x by 7, and x is called a pre-image of w.

Function f

pre-image x

As a special case of transformations, 7),(x)= Ax, for mxn matrix A4

and x€R", 7, : R"->R"™ is called a matrix transformation.

Tp+1 Ay ayx Qyp Qg Qg Ty
Yn+1 azy a’yy azy awy ay Yn
/ = ( ) = A = =
X f X X Zp+1 Ay a’yz A, Gy, Qa Zn
Wy 41 Qg ayw Ay Qypy Ay wy,
1 1 1 1 1 1 1
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[Remark] Computer simulation

[Matrix transformation)
http://www.geogebratube.org/student/b73259#material /22419

@
[ ¥

)’

2 Xy o
L e x o
T ‘-\‘/ //
A /./»" RN A,
y 1
/; EES /
@ pr
4 4
% (]
& B i 3 g
£ x, -1 1.1

A 168
Ay
- &

 Matrix representation © Mt represeitation

(-2 1) . -002 154 b)f-11
v-(4)- -& E - - .
S W - =(5a) () 158) 7%
| # vectors epresentation- 7| ® vectors reprasentation: s
&) if-2 1) - -002 154 )iy
v,(“J,-.( Jq”,uﬂ,aq 5 ={ ]E, ( J‘ (JEH. 3
3 -y T . R T e B R e N

Definition

If a transformation 7:R"-R™ from R" to R™, satisfies the

following two conditions for any vectors u, v ER" and for any scalar
kER,

(1) T(u+v)=T{)+ T(v) (2) T(ku)=k7T(u)

then 7T is called a linear transformation from R" to R™. Especially,
a linear transformation from R" to R" itself, 7 : R"- R" is called a

linear operator on R".

w Show that 7' is a linear transformation if we define 7" : R*- R?, for any

vector x= B] in R2%, as follows
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For any two vectors u = “ , V= Zl in R? and for any scalar k€ R,
2 2
_ Uy vyl u; + v
(1) Tlutv)= j( u| " [Uz])_ 7( “2+“2])
u; + v, U vy
= U2 + 'U2 = u? + U2
(u1+v1)—(u2+v2) U — Uy V] T Uy
=T(u)+ T(v).
I ku, Uy
u U
(2) T(ku)= 7(4 ! ): T([ 1})2 kuy, |=k| uy |=kT(u).
Uy ku,
ku, — kuy U — Uy
Therefore, by definition, 7' is a linear transformation from R? to R®. H

LetT:]R3 - R?*  T(z,y,2)=(z,y). Show that 7 is a linear

transformation.

ey :

For any two vectors v, = (z, ,y;, 2,) and Plz, , 2)

v, = (&5 ,yy 2,) in R? and for any scalar k€ R ,

Y

(1) T(V1+V2) = T(Z‘l"‘l‘w Y1t Y2 21 +Z2)

= (171'“327 Z/1+Z/2)
:($1791)+($27 3/2): T(V1)+ T(Vz)- A AL

(2) T(kv)= T(kx, ky, kz)
=(kz, ky)=k(z,y) =k T(v)
Therefore, T is a linear transformation. [ |

o This type of linear transformation is called orthogonal projection on zy-plane.

i If we define 7 :R?- R® as follows, show that 7 is not a linear

transformation.
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Ty
For any two vectors, v, =

in R2,

T, + xQ} )
Y1 T Yo

, Vo =

Yo

[l
-

Ty

T(v,+v,) = 7( y
However, 7(v,)+ T(v,)= 7([2])+ 7‘(

Hence T(v,+v,)# T(v,)+ T(v,).

x, + x4 }
Y1ty 17

1

T, + T,
Y1ty +2]°

y;+1 ys +1

Therefore, we conclude that 7 is not a linear transformation. [ |

[Remark] Special Linear Transformations

zero transformation: For any vER", if we define 7: R"-= R™ as 7(v)=0,

then 7 is a linear transformation. This is called a zero transformation.

identity transformation: For any vE R", if we define 7: R"= R™ as 7(v)=v,
then 7T is a linear transformation. This is called an identity transformation.

matrix transformation: For any m xXn matrix A and for any vector x in R",

if we define 7, (x)= Ax, then 7, is a linear transformation from R" to R™.

This is called a matrix transformation.

' Let7 : R*- R? is defined as follows. Show 7 is a linear transformation.

X X
11 0
T[ Y j_ [o 1—1] y}
4 z
Uy Uy
For any two vectors u= |uy|, v=|v,| in R® and for any scalar k€ R,
U3 7]3
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[uy + v, Uy vy
(1) T(u“‘V):[l ! 0] Uy 0y :[1 ! O][“Q + U2J

01—1 Ly + vy 01—1 s vy
11 0 K 11 ool
- [0 1—1] 2 +[0 1—1] va| = Tlu)+ 7(v)
[ U3 U3
11 o], 11 oo |
(2) T(ku):[o 1_1] K, :k‘[o 1_1] uy| = k7(u)
ks Us
and hence, 7 is a linear transformation. [ |
T 1 0
A linear transformation 7 from is T([x})z y [=1(0 1 [x]
Yy T—y 1 —1 y
1 0
T is a matrix transformation for a matrix A4 1 [ |
1 —1
Theorem 6.1.1 [Properties of Linear Transformation]
If 7: R" - R™ 1is a linear transformation, then it satisfies the
following conditions:
(1) 7(0)=0.
(2) T(=v)=— T(v)
(3) T(u—v)= T(w)— 7(v)
(1) Since VvEV, 0v=0, 7(0)= 7(0v)=07(v) =0.
(2) T(=v)=T((=1)v) = (= 1) T(v) == T(v)
3) Tu—v)=Tu+(—1)v)=T@)+ (—1)Tv)= Tlw)— T(v) [ |

@ Each linear transformation from R" to R™ can be expressed as a matrix
transformation.

Let 7 : R" > R™ be any linear transformation. For elementary unit vectors,
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e, €, .., e, of R" and for any x€ R", we have

Ty
Ty
x=\|.7|= T8t 9yt e,
:L.H
and as T(e,), T(e,), ... , T(e,) are mx1 matrix, we can write them as
ar [P QA1p
_ | _ | Q22 _ | @
T(el)_ : 9 T(ez)_ . 9 eee T(en)_ . "
Ay am? amn

Therefore any linear transformation 77 : R" - R™ can be expressed as

T(x)=x,1T(e,) +x,T(e,)+ - +z,T(e,)
apy Q12 Aypn a1y T appxy + tag,z,

a a a Ay L1 T Ayoly +-Ft ay, x
— 2, 121 + 122 oot om | _ 2171 2272 2L . (1)

A1 A2 mn Q17 +am2x2 +'”+amn‘rn
Now let 4 be an mxn matrix which has 7(e,), 7(e,), ... , T(e,) as it's columns.
Ay Qrg ++ Ay
A= [Tle): Tey): o : Tle,)] = | %2t 22 = o

A1 Qg oo Gy
Then,
ayp Grg -+ Ay | |2
T(x)= C.l21 ?22

A1 Q2 = Oy | [Ty

Qo Lo

The above matrix A = [a;],, ., is called the standard matrix of 7 and is denoted

by [7]. Hence, the standard matrix of the linear transformation given by (1) can
be found easily from the column vectors by substituting the elementary unit

vectors to 7 in that order.
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Theorem 6.1.2 [Standard Matrix]

If 7:R">R™ is a linear transformation, then the standard matrix

A=[T] of T has the following relation for x R".
T(x)=Ax, VxER"

where A= [T(e;): T(e,): - : T(e,)].

T+ 2x
961 1 2
. . _:Z,‘l_:Z,‘Q
For a linear transformation 7 : R?® - R* 7||zy||= .
3
T3
T T x5

using the standard matrix of 7, rewrite it as 7(x) = Ax.

e http://matrix.skku.ac.kr/RPG_English/6-MA-standard-matrix.html

http://sage.skku.edu

1 20
S Let A= _(1)_(1) (1) , which columns are 7T(e;), then 7T(x)= Ax as
1 01
+2
[ e
T(x)=T| |2:| |- ;3 =10 o1llm|=4x
| 2+ 1o 1jtos

X, vy, z=var('x y z')

h(x, v, z) = [x+2*y, -X-vy, z, X+Z]

T = linear_transformation(QQ*3, QQ"4, h) # define linear transformation,

# here scalar is rational numbers

C = T.matrix(side='right") # standard matrix

x0 = vector(QQ, [2, -3, 3])

print C

print T.domain() # domain

print T.codomain() # codomain

print T(x0) # image

print Cx*x0 # product of standard matrix and a vector
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[1 2 0]

[-1 -1 0]

[0 O 1]

[1 0 1]

Vector space of dimension 3 over Rational Field

Vector space of dimension 4 over Rational Field

(-4, 1, 3, b)

(-4, 1, 3, b) |

http://en.wikiquote.org/wiki/Georg_Cantor
Georg Ferdinand Ludwig Philipp Cantor (1845-1918)

“The essence of mathematics lies
entirely in its freedom.”

most famous as the creator of set
theory, and of Cantor's theorem
which implies the existence of an

“infinity of infinities."
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I

\ Geometric Meaning of Linear Transformations
6 [ | 2

o Reference video: http://http://youtu.be/cgySDj—QVIM, http://youtu.be/12WP—cb6Ymc
e Practice site: http://matrix.skku.ac.kr/knou—knowls/cla—week—8—-Sec—6—2.html

In this section, we study the geometric meaning of linear transformations.
For a given image, continuous showing of series of images with small

variations makes a motion picture. Linear transformation can be applied to

computer graphics and numerical algorithms, and it is an essential tool

for many areas such as animation.

Linear Transformation from R? to R?

ya YA

Pe, o Plx, y)

N b3
N\ .
Y 5
\ |
X, \

/'Q "o Qlax+by, cx+dy)

O x O 2

A linear transformation 7 :R%*- R? defined by T([x])z ax +by
Y cx+dy

vector OP = (z, y) to an another vector OQ =(ax+by, cx+dy).

} moves a

S 1 [rotation, symmetry, orthogonal projection] We illustrate a few linear

transformations on R?2.

(1) Ry: R?- R? is a linear transformation which rotates a vector in
R? counterclockwise by # around the origin.

R, = [ cosé —sm&]

siné cosf

(2) An orthogonal projection P: R*-» R? on z-axis is a linear

transformation.
_ |1 O0|x]|_|=x
P(X)_{oo y]_[O]
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(3) A symmetric movement 7 :R?- R? around z-axis is a linear

transformation.
|1 0 T | T
re=|o _Y)[7]=] 2] 0
e http://matrix.skku.ac.kr/sglee/LT/11.swf
U Ry(x) YA YA
X X

Y <

O

[
r

P(x) %

S
=Y
S

ﬂ
o ORY

) Find the standard matrix 4 for a linear transformation which moves a

point P(z, y) in R? to a symmetric image around the given line.
(1) y-axis (2) line y=12x

Symmetric (linear) transformation around y-axis and the line y=z are

1([5])-14

given in the following figures.

;)

_|—10 o1
A= [ 0 1] 4= [1 0] u
e http://matrix.skku.ac.kr/sglee/LT/22.swf
e http://matrix.skku.ac.kr/sglee/LT/44.swf
YA YA
(&, )
(=z, ) (x, y) s
i i e <
o (y, x)
) 9] & 0 X
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[Remark] Simulation

[linear transformation] http://www.geogebratube.org/student/m9703

[symmetric transformations and orthogonal projection transformations]
http://www.geogebratube.org/student/m9910

[rotation] http://www.geogebratube.org/student/m9702

Wi
Choose your Linear Transformation

Linear transformation 7 :R? -— R? which moves any vector x = (z,y)

in R? to a symmetric image around a line, which passes through the
origin with angle 6 between the z-axis and the line, can be expressed

by the following matrix presentation H,= [T(el) ! T(e2)],

cos260 cos(i— 29)

. ) . 2 _|cos280  sin26
Hy=[T(e,) : T(e,)] = <2 —sin(z—%’) N [Sin29 —cos29] o
2
Y
€,
“\
\‘ %_9 y:(tdng)l
T_
/[ cos(2 29)
~0 ‘\ 'p\
o emain (L
T =20 TNy sin(—26)

T(e)= (COS(% —29), —Sin(i —29))

2
In w if 9:%, Hy, = [0 1], ie. T(z,y)= (y,x).

10

-. As shown in the picture, let us define an orthogonal projection as a
' linear transformation (linear operator) 7 :R?- R? which maps any

vector x in R? to the orthogonal projection on a line, which passes
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through the origin with angle 6 between the z-axis and the line.
Let us denote the standard matrix correspond to 7' is P,.
Pyx—x= %(Hex— x)  (the same direction with a half length)
1 1 1 1 1
Pyx= o Hyx+ 5x= o Hyx+ - Ix= 5(1{9 + I)x
l(1+ 20) L in26
1 2 cos 2 ° cos?0  sinfcosh
Py = 5(}[9 +)= 1 1 " |sinfcosf  sin% u
—sin20  =(1—co0s20) st
2 2
Y y=(tan 6)x
X
y=(tan Oz
X
T(x) POX\
Hox
[
6
0] X @] x

, it =0, Py= [1 0] is a projection onto the x-axis.

In 00

[Remark] shear transformations (computer simulation)

(1) [x] - [:H—ky]: shear transformation along the z-axis with scale k&

(2) [x] - [kxﬁ_ y]: shear transformation along the y-axis with scale &

e http://www.geogebratube.org/student/m9912

Choose your Linear Transformation

Identity ¥
—_— @
34

2E® 2YY

[ ] o5 299

sz s
C=(L1) [pm)

oz 29

A= (0.0) B,=(1.0)

i
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Definition

A linear transformation 7:R" — R", which preserve the magnitude

(or length of a vector), |7(x)|l=[Ixll, is called Euclidean isometry.

Theorem 6.2.1

For a linear operator 7 : R"- R", the following statements are

equivalent:

(1) 17T =Ixll, xER™ (isometry).
(2) T(x)- T(y)=xy, x, yER" (preserve the inner product).

Definition

For a square matrix A4, if A '=A47 then A is called orthogonal matrix.

cosf —sinf

sing cose] is orthogonal matrix, and

For any real number 6, Q= [

1 cosf siné
Q= [— sind cosf]" =
Verify the following matrices are orthogonal matrix.
[ 1 1 1 ]
3 4 V3 V2 6
5 5 1 1 1
A= B= -
4 3 V3 V2 V6
5 5 1 0 - 2
VE] V6 |
Verify A"A=1 B"B=1 by using the Sage. ]
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e http://matrix.skku.ac.kr/RPG_English/6-TF-orthogonal-matrix.html

http://sage.skku.edu

A=matrix(QQ, 2, 2, [3/5, -4/5, 4/5, 3/5])
B=matrix(3, 3, [1/sqrt(3), 1/sqrt(2), 1/sqrt(6),
1/sqrt(3), -1/sqrt(2), 1/sqrt(6),
1/sart(3), 0, -2/sqrt(6)])
print A.transpose()*A # confirm the orthogonal matrix
print

print B.transpose()*B

[1 0] [1 0 0]
[0 1] [0 1 0]
[0 0 1] |

Theorem 6.2.2

For any nXxn matrix A4, the following statements are hold:

(1
(2
(3
(

4) If A is an orthogonal matrix, then det4A=1 or —1.

The transpose of an orthogonal matrix is an orthogonal matrix.
The inverse of an orthogonal matrix is an orthogonal matrix.

The product of orthogonal matrices is an orthogonal matrix.

)
)
)
)

(1) and (2) are left as an exercise to the reader.
3)If A"'=4" and B '=B" then UB) '=B A '=B"AT=UB)"
and hence AP is an orthogonal matrix.

(4) Observe that 1=det/=det(4A47) = det(A4)det(4?) = (detA)*
detA=1 or —1 . [ |
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Theorem 6.2.3

For any nXxn matrix A4, the following statements are equivalent:

(1) 4 is an orthogonal matrix.

(2) lAxll=1xll, x€R".

(3) Ax- Ay=x- vy, x, yER".

(4) The row vectors of 4 are orthonormal.

(5) The column vectors of A are orthonormal.

(1) = (2): [|4xIP = Ax- Ax = < Ax, Ax > = (Ax)TAx=xT4"T4x

=x74 "Ax=x"x=<x, x>=x x=|]x/]?

(2) = 3): NAx+y) I =1Ax+Ayl?= 1 Ax1*+2(4x- Ay)+ | Ay 2
= lIxlI?+2(4x- Ay)+ llyll?
and
Il Ax+y) I 2= llx+yll?2=lIxI?+2(x- y)+ lyl?Z2
Hence Ax- Ay=x- y .
(3) = (1) Vi, ejTATAe,;Zej- e;=<e;, ej>=ejTe1;= {(1): :;j
= (474),; = o ATA=1

7]

We skip the detailed proof of (4) and (5) as we can get the result easily from

the definition of the orthogonal matrix, A TA=71=4A47, and (1). [ |
nrlfrir\vn a0
1 ALRET T I".",,
201 CHARLES STREET |

[The headquarter of American Mathematical Society, Providence, RI, USA]
http://www.ams.org
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~ Kernel and Range
| o Reference video: http://youtu.be/9YciT9Bb2BO, http://youtu.be/H—P4IDgruCc

o Practice site: http://matrix.skku.ac.kr/knou—knowls/cla—week—8—Sec—6—3.html

We will show that the subset of a domain R", which maps to zero

vector by a linear transformation, becomes a subspace. We will also

show the set of images under any linear transformation forms a

subspace in the co-domain. Finally, we introduce the concept of

isomorphism.

Definition

Let 7: R"- R™ is a linear transformation. The set of all vectors in
R"™, whose image becomes 0 by 7, is called kernel of 7 and is
denoted by ker 7. That is, ker7={vER" | T(v)=0}.

w Find the ker7 for a linear transformation 7 : R?>- R?, where
L Tz, y)=(z—1y,0).

ker 7= {(z,y) ER?| (x—y. 0)= (0. 0)}={(z, y) ER? | y=x}. [ |

Find the ker7 for a linear transformation 7:R*-R*  where

T(xy, 29, 25,2,) = (0,21, 29, 5).

For any x= (z,,2q,24,2,)E R",

- 204 -


http://youtu.be/9YciT9Bb2B0
http://youtu.be/H-P4lDgruCc
http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-3.html

T(xy 29, 25,2,) = (0,27, 29,23) =0 & x,=0, i=1,2,3
and hence, ker 7= {(0,0,0,z,) | z,€R }. [ |
Definition

For a transformation 7 : R" - R™, if 7(u)= 7(v) = u=v, then it

is called one-to-one (injective).

Definition

For a transformation 7 : R"™ - R™, if there exist v&R" for any

given we R™, such that 7(v)=w, then it is called onto (surjective).

Theorem 6.3.1

Let R"and R™ are vector spaces and 7 :R"->R™ is a linear
transformation. Then 7 is one-to-one if and only if ker77=0.

(=) As VveEkerT, T(v)=0= 7(0) and 7 is one-to-one,
= v=0 . ker7=1{0}

(=) T(Vl):T(VQ) = OZT(Vl)_T(VQ):T(‘H_V?)
= v,—v,Eker7={0} = v, =v,

T is one-to-one. [ |

SN Let us define a linear transformation 7' : R*- R?* as T(z,y)=(y, z). Is

Tan one-to-one?

As ker7=1{x€R?|7(x)=0} = {(z, y)| T(z, y) = (y,2) = (0, 0)}, the only
element in this set is (z, y)=1(0, 0). Hence ker7={(0,0)}, and 7 is

one-to-one. |
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Is a linear transformation 7: R®*-> R® one-to-one if it is defined as

T(x,y, 2)=(x+2y— 2, y+ 2, c+y—22)7?
r+2y—2=0 L

Since T(z,y, 2)=1(0,0,0) & { y+tz=0 = {x+2y+z:8 ,
r+ty—2z=0 Y

the system of linear equations has infinitely many solutions. Hence,

ker7# {0} and by theorem 6.3.1, 7 is not one-to-one. O

http://sage.skku.edu

@ verify linear transformations' one-to-one

U = QQ"3 # vector space

X, vy, z = var('x, y, z')

h(x, v, z) = [x+2*y-2, y+2, X+y-2%Z]

T = linear_transformation(U, U, h) # generate a linear transformation

print T.is_injective() # check the one-to-one

False

® Find Kernel of linear transformation

T.kernel() # verify by finding kernel

Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:

[ 1-1/3 1/3] # kernel = span( [1, -1/3, 1/3] ). [ |

Q Let 4 be an m Xn matrix. If we define a linear transformation 77 : R"-> R™ as
T(x)= Ax, then ker7T is a solution space of the system of linear equations
Ax=0.
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Theorem 6.3.2

Let R", R™ are vector spaces and 7 : R"-R™ is a linear

transformation. Then ker7 is a subspace of R". Hence ker7 is called
kernel (subspace).

w Find the kernel of a A= [1 1].

1 -1

http://sage.skku.edu

A = matrix(2, 2, [1, 1, 1, -1])
print A.right_kernel() # kernel of A

Free module of degree 2 and rank O over Integer Ring
Echelon basis matrix:

[1 # kernel has only 0.

Definition [Isomorphism]

For a linear transformation 7 : R"- R™, the set of all 7T(v) for
vER", is called range of 7 and is denoted by Im7. That is,
Im7={7v)eR™ |[veR"} ¢ R™.

Especially, if In7= R™ then 7 is called surjective or onto. If a linear

transformation 7' is one-to-one and onto, then n=m and 7 is called

an isomorphism from R" to R".

Find the range of the linear transformation 7(z, y)= (z—y, 0).

ImT={T(z, y) | (@, y)ER*}={(z—9,0) | (z,y)ER*}={(a,0) | aER}.

Note that, In7 # R? = 7 is not surjective.
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T is not isomorphism as it is not surjective.

) Let I/VIZ{(ml, Ty, 0, 0)] zy, J;2€]R} and I/VQZ{(O, 0, 23, 7,) | 23, x4E]R}. It

is easy to see that both W, and ¥, are subspaces of R*. If we define

T: W= W, as following linear transformation,

T(z,y,0,0)=(0,0, z, y)

then 7 is both one-to-one and onto, and hence it is isomorphism. [ |

Theorem 6.3.3

For a linear transformation 7 : R"-> R™, Im7T is a subspace of R™.

Vw,w,€Im7, 3v,v,€R" 2 T(,)=w,, T(v,)=w,
s W, + W= T(v,)+ T(v,) = T(v, +v,)

= 3v,+v,€R" 2 TV, +v)=w,+w, €ER™ -~ w+w,EIm7T

VkER, kw, =kT(v,)= T(kv,)
= 3 kv,ER" 2 T(kv,)=kw, €R™ Lo kw,€EImT

Im(7) is a subspace of R™. [ |

' Let A4 be an mXn matrix, if we define a linear transformation

7 :R"- R™ as T(x)= Ax, then Im7 is a column space of A.

Let 4= [A(l): AP :A("”)], that is, A% be an mxn matrix A's ith
column vector. Then for any vector x= (z,, zy -, z,)  ER",
L1
Ax=[AWA® g0 P2 = g0 4 @ g 40
T

n
That is, any image can be expressed as a linear combination of column

vectors of A4.
Im 7={4x | x€R"}=< AW, 4® 40 > [
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Theorem 6.3.4
For a linear transformation 7, :R"-> R™ defined by a matrix
A=layl,, «, satisfies the following two properties.

(1) 7, 1is one-to-one. < column vectors of A are linearly

independent.

(2) T, is onto. & row vectors of A are linearly independent.

(1) T, in one-to-one & kerT, ={0}
< There is a unique x=0 € R" which satisfies 4x=0.

< n column vectors of A are linearly independent.

(2) T, is onto & Im7,=R"
© For A's column vectors 47,
R™ = Im 7={4Ax : x€R"}=< 4V, 4% 4" >
& In RREF(A), the number of leading ones is m.
< row rank of 4 is m.

< m row vectors of A are linearly independent. [ |

Verify the following by using the Sage.

10
0 1
0 0

http://sage.skku.edu

@ define a linear transformation

(1) Let A= . T, : R*> R? is one-to-one but not onto.

U = QQ*2

V = QQ"3

A = matrix(QQ, [[1, 0], [0, 1], [0, O]])

T = linear_transformation(U, V, A, side='right') # linear transformation
print T
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Vector space morphism represented by the matrix:

[1 0 0]

[0 10]

Domain: Vector space of dimension 2 over Rational Field

Codomain: Vector space of dimension 3 over Rational Field

@ check the surjectivity (onto)

print T.image() # generate the range

print T.is_surjective() # check the surjectivity (onto)

Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:

[1 0 0]

[0 10]

False

® check the injectivity (one-to-one)

print T.kernel() # generate the kernel

print T.is_injective() # check the injectivity (one-to-one)

Vector space of degree 2 and dimension 0 over Rational Field
Basis matrix:

(]

True

g] 7, : R*> R? is onto but not one-to-one.

(2) Let A:[ (1)

1
0
http://sage.skku.edu

@ define a linear transformation

U = QQ"3

V = QQ*2

A = matrix(QQ, [[1, 0, 0], [0, 1, 0]])

T = linear_transformation(U, V, A, side='right’) # linear transformation

print T
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Vector space morphism represented by the matrix:

[1 0]

[0 1]

[0 0]

Domain: Vector space of dimension 3 over Rational Field

odomain: Vector space of dimension 2 over Rational Field

@ check the surjectivity (onto)

print T.image() # generate the range

print T.is_surjective() # check the surjectivity (onto)

Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:

[1 0]

[0 1]

True

® check the injectivity (one-to-one)

print T.kernel() # generate the kernel

print T.is_injective() # check the injectivity (one-to-one)

Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:

[0 0 1]

False

Theorem 6.3.5

be an nXxXn matrix. If 7, : R"->R" is a linear

nxXn

Let 4= [aij]

transformation, 7', is one-to-one if and only if 7, is onto.

T, is one-to-one & ker7, =1{0}

& There is a unique x=0 € R" which satisfies 4x=0.
& In A's RREF, number of leading ones is n.
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& For A's column vectors A",
Im7= {Ax lxeR "}:<A(1)7 A<2), " AW S =Rn

Equivalence Theorem of Invertible Matrix

Theorem 6.3.6 [Equivalence Theorem of Invertible Matrix]

Let A be an nXn matrix, the following statements are all equivalent.
1

2
3

(1) column vectors of A4 are linearly independent.

(2) row vectors of A are linearly independent.

(3) Ax = 0 has only trivial solution x=0.

(4) For any nx1 vector b, Ax = b has a unique solution.
(5) A and I, are column equivalent.

(6) A4 is invertible.

(7) det(A4)# 0

(8)
(9)
(

9
10) 7, is onto.

A =0 is not an eigenvalue of 4.

T, is one-to-one.

Team

Country siZe P1 P2|P3|P4 P5 P6 Total Rank|
Republic of Korea 6 | 6 42| 42| 21| 39| 42| 23| 209 1
People's Republic of China - & 6. 42- 40 14- 31- 33 BCI- 195 2-
-E_Inited States of America - 6 . 6 - 42- 40- 33- 38- 23- 18- 194- 3-
.Russian Federation . 6 l 6 . 42. 35j 21. 41. 29. 9. 17?. 4.
.Canada . 6 lG .42.32. 9.39.24; 13. 159. 5.
.Thai!and . 5] l 6 . 42. 42. 4. 39. 30. 2. 159. 5.
-Singapﬂre - 5] . 6 - 42- 35: 11- 32- 2?- ?- 154- ?-
-Isiamic Republic of Iran - [ . 5 . 1- 42- 29- 6- 39- 34- 1- 151- 8-
Vietnam . G 6. 42. 36: 4. 31. 25 CII 148 9.
Romania . 6 |5 l 1 40. 36 ?. 36. 20 5. .

144

i
s ]

[Ranking of International Math Ol}}mpiad .201.2]

https://www.imo-official.org/results.aspx
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\\ Composition of Linear Transformations and Invertibility
I
B o Reference video: http://youtu.be/EOQIg4LouGao http://youtu.be/afAmNsdIPxc

e Practice site: http://matrix.skku.ac.kr/knou—knowls/cla—week—8—Sec—6—4.html

In this section, we study the composition of two or more linear

transformations as continuous product of matrices. We also study the

geometric properties of linear transformation by connecting inverse

functions and inverse matrices.

Theorem 6.4.1 [Composition of Functions]

If both 7: R" - R*¥ and §: R¥ o R™ are linear transformations,
then the composition
S° T, RH — RITL

is also a linear transformation.

R R* R#*

x TCx) (57 x)=S(T( x))

¢
'

Theorem 6.4.2

For linear transformations 7 : R” - R* and § : R¥- R™,
(1) S T is one-to-one implies 7' is one-to-one.
(2) So T is onto implies S is onto.

(1) If T(v,) = T(v,), for v;,v,€ R", then S(T(v,)) = §(T(v,)).
= (S T)(v,)=(Se T)(v,) = v,=v, (" So T is one-to-one)

T is one-to-one.

(2) If So T is onto, then for Vz&R™, there exist vER" such that
(So T)(v)=2z. That is, there exist v R" which satisfy S(7(v))=z. Since
T(v)=wER", there exist w=R" such that S(w)=z.
~ S is onto |
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Q For the case of composition of two linear transformations, the corresponding
standard matrix is the product of two standard matrices from each linear

transformation.

That is, let 7 :R"-> R*, § :R¥ = R™ and 7 :R" - R" has a standard
matrix [7], § :R* = R™ has standard matrix [S]. Then the linear

transformation S 7 : R"™ - R™ has the standard matrix [Se 7] =[S][7].

SeT iR — R (S0 TI=LSIT] |

K K e \—1

The standard
T s matrix of
T . Su T
V(5 THx)=8(T(x))

He
=1

— L == The standard

matrices of ['and g

Q Let the standard matrix of a linear transformation 7° be A. If an inverse

transformation 7' exist, then the standard matrix of 77! is the inverse of the

matrix 4.

Let 7§ : R? = R? are linear transformations which rotate #, and 6,
(counterclockwise) respectively around the origin. The corresponding
standard matrices are as follows.

cosfl, —sinf,
sinf, cos#,

cosf; —sin#,

[T]:[ sinf;  cosf,|’ [s1=

As the composition of these two transformations rotates 6, +#6, around

the origin, R= S+ 7T's standard matrix is as follows.
(7] = cos(6,+6,) —sin(0,+0,)
| sin(6,+0,) cos(6, +6,)

Also the product of standard matrices of 77" and S are as follows.
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[ cosf, — sinb,
| sinf, cosb,

cosf;, —sinb,
sinf, cos#,

[ cosfycos0, — sinfysinf, — cosf,sinf; — sinf,cosb,
| sind,cosf; + coshysinf; — sinf,sind; + cosfycosh,
[ cos(0,+6,) —sin(6;+6,)

= _ Sin(91+92) COS(91—|—92)]:[R]:[S° 7). [ ]

As shown in the picture, find a matrix transformation which transform a

circle with radius 1 to the given ellipse.

/N Yk

i :
le x Oz T

First we find a transformation which expands 3 times around the z-axis,

and expands 2 times around the y-axis. Then take a transformation

which rotates % around the origin. The first transformation 77 is

T,(z,y) = (3z, 2y), and hence the standard matrices for 7, and the

rotation transformation 7, are

V2o V2
ool = 5 5
2 2

(73]

Therefore, the standard matrix for the composition is the product of two

standard matrices.



[Remark] Computer simulation

[Matrix Transformation] http://www.geogebratube.org/student/m57556

i A AN SRY

A= W
075 125 e

125 -075 [0.95] 142
-075 125 || -03 -11

o Similarly a composition of three or more linear transformations, the standard
matrix of the composition is the product of each standard matrix in that
operation order.

Theorem 6.4.3

A function f : X - Y is invertible if and only if f is one-to-one and

onto.

Theorem ©6.4.4

If a linear transformation 7 :R" - R"™ is invertible, then

77! :R"™ - R" is also a linear transformation.

Inverse transformation of composition of transformation: (Se T)_1 =71t g1
[Se 17t = (S =7 '[!
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[Remark] Computer simulation

[shrink transformation and expand transformation]

http://www.geogebratube.org/student/m11366

Choose your Linear Transformation

identity

Reduction
Matrix = 28 [31,243)

3
[ ;
& L)

Expansion

(1 44103)

“All human knowledge begins with intuitions, proceeds from
thence to concepts, and ends with ideas.”

Immanuel Kant (1724-1804) is

one of the most influential
philosophers in the |history of
Western philosophy. His
contributions to metaphysics,
epistemology, ethics, and aesthetics
have had a profound impact on

almost every philosophical movement
that followed him.
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\ *Computer Graphics with Sage

\
6 [ | 5 e Reference video: http://youtu.be/VVv5zzeYipZs

e Practice site: http://matrix.skku.ac.kr/Lab—Book/Sage—Lab—Manual—2.htm
http://matrix.skku.ac.kr/Big—LA/LA—Big—Book—CG.htm

Computer graphics plays a key role in automotive design, flight
simulation, and game industry. For example, a 3 dimensional object,
such as automobile, its data (coordinates of points) can be described as
a matrix. If we transform the location of these points, we can redraw

the transformed object from the points which are newly generated. If

this transformation is linear, we can easily obtain the transformed data
by matrix multiplication. In this section, we review several geometric

transformations which are used in computer graphics.

Geometric meaning of Linear Transformation 1
(Linear Transformation of Polygon’s Image)

@ By using the Sage, draw a triangle with three vertices (0,0), (0,3), and (3, 0),
a triangle expanded twice, a figure by a shear transformation along the z-axis

with scale 1, and a triangle which is rotated counterclockwise by %

. First of all, in order to define the above linear transformations, we input the

following linear transformations by using matrix.

def matrix_transformation(A, L):
n=matrix(L).nrows() # list L's number of elements
L2=[[0,0] for i in range(n)]  # define a new list L2
for i in range(n):
L2[i]l=list(A*vector(L[i]))  # L2=AxL
return L2 # return L2
print "The matrix_transformation function is activated"#confirm whether it is applied

. Then, we define appropriate standard matrices to fit the problems’ condition.
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A=matrix([[2,0], [0,2]1]) # Expanding twice of given image
B=matrix([[1,1], [0,1]1]) # shear transformation along the z-axis with scale 1
C=matrix([[cos(pi/3), —sin(pi/3)], [sin(pi/3), cos(pi/3)1])

# rotate counterclockwise the given image by

o Draw a triangle which has three vertices (0, 0), (0, 3), (3, 0) by using ploygon.

Li=list( [ [0,0], [0,3], [3,0] 1) # input three vertices

SL1=polygon(L1, alpha=0.3, rgbcolor=(1,0,0)) # draw a polygon which passes
through the given three points

SL1.show(aspect_ratio=1, figsize=3)

3
25
2
15
1
0.5

05 1 15 2 25 3

e Draw a twice expanded triangle from the given triangle.

L2=matrix_transformation(A, L1) # find new three points by a linear transformation
SL2=polygon(L2, alpha=0.8, rgbcolor=(0,0,1)) # draw a polygon which passes
through the given three points

SL2.show(aspect_ratio=1, figsize=3)

P NI ¥V R S R
—

o Draw a shear transformed figure along the z-axis with scale 1 from the given
triangle.

L3=matrix_transformation(B, L1) # find new three points by a linear transformation
SL3=polygon(L3, alpha=0.8, rgbcolor=(1,0,1)) # draw a figure which passes

through the given three points
SL3.show(aspect_ratio=1, figsize=3)
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o Draw a figure which is rotated counterclockwise by % from the given triangle.

L4=matrix_transformation(C, L1) # find new three points by a linear transformation
SL4=polygon(L4, alpha=0.4, rgbcolor=(0,0,1)) # draw a figure which passes
through the given three points

SL4.show(aspect_ratio=1, figsize=3)

e Show the above four figures in the same frame.

(SL1+SL2+SL3+SL4).show(aspect_ratio=1, figsize=3)

o
-
4'.
3.
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Geometric meaning of Linear Transformation 2
(Linear Transformation of Line’s Image)

Q Draw the alphabet letter S on the plane. Then draw figures which expands the

original figure twice, sheer transforms along the z-axis with scale 1, and

rotates counterclockwise by %

o First of all, in order to define the above linear transformations, we input the

following linear transformations by using matrix.

def matrix_transformation(A, L):
n=matrix(L).nrows() # list L's number of elements
L2=[[0,0] for i in range(n)] # define a new list L2
for i in range(n):
L2[i]=list(A*vector(L[i]))  # L2=AxL
return L2 # return L2
print "The matrix_transformation function is activated"#confirm whether it is applied

o Then, we define appropriate standard matrices to fit the problems’ condition.

A=matrix([[2,0], [0,2]]) # Expanding twice of given image
B=matrix([[1,1], [0,1]]1) # shear transformation along the xz-axis with scale 1
C=matrix([[cos(pi/3), —sin(pi/3)]1, [sin(pi/3), cos(pi/3)]11)

# rotate counterclockwise the given image by

e Draw an alphabet letter S by using the line function.

L1=list( [ [0,0], [4,4], [-3,12], [0,15], [3,12], [4,12], [0,16], [-4,12], [3,4],
[0,11, [-3,4], [-4,4], [0,0] 1) # input the data which compose letter S
SL1=line(L1, color="red") # draw a figure which passes through the given points

SL1.show(aspect_ratio=1, figsize=5)

w
T

A R
4321 12314
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e Draw a twice expanded letter S from the given figure.

L2=matrix_transformation(A, L1) # compute new points’ coordinates by a linear
transformation
SL2=line(L2, color="purple") #draw a figure which passes through the given points

SL2.show(aspect_ratio=1, figsize=5)

o Draw a sheer transformed figure along the z-axis with scale 1 from the given S.

L3=matrix_transformation(B8, L1) # compute new points’ coordinates by a linear
transformation
SL3=line(L3, color="blue") # draw a figure which passes through the given points

SL3.show(aspect_ratio=1, figsize=5)

15

10

o Draw a figure which is rotated counterclockwise by % from the given letter S.

L4=matrix_transformation(C, L1) # compute new points’ coordinates by a linear
transformation
SL4=line(L4, color="green") +#draw a figure which passes through the given points

SL4.show(aspect_ratio=1, figsize=5)
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o Show the above four figures in the same frame.

(SL1+SL2+SL3+SL4).show(aspect_ratio=1, figsize=5)

http://modular.math.washington.edu/
[William Stein : The first Sage developer]

[Sage code developers: Linear
[Sage developer group] Algebral
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e http://matrix.skku.ac.kr/LA-Lab/index.htm

e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

Verify that 77 : R® = R?, where T(x,, @y, x3) = (x,, 2, + Ty, , + 29 + x3), iS
a linear transformation and find 7(x) for x= (1, 2, 3).

Ty
The map 7T can be written as a matrix transformation, T{%]
L3

100] %1 1 1001 1
= 1110]||xy|. So it is a linear transformation. 7(x)=7"||2||=1110[|2| = |3|. A
111 3 111113 6

T3

Find the standard matrix [7] for 7(z,y, z)=(x—y, y— 2, z—x) by using
the standard basis.

(LG et a linear transformation 7 : R? — R? satisfy the following conditions:

(1) Evaluate 7(—1, 1).

(2) Evaluate T(z, y).
Let 7 :R? - R? moves any x€ R? to a symmetric image to a line which

passes through the origin and has angle 6 = % between the line and the =z

_axis. Find 7T(x) for x= [‘Z’]

Check whether the given matrix is an orthogonal matrix. If that is the

case, find the inverse matrix.
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1 1
| m
1 1
V22
L1 1 1] 1 1
-1 1 1 1 -1 1 01
V2 2 V2 V2llve V2
1 1
.. A is an orthogonal matrix. And 4~ '=47= _\/? \/15 u
NOERYS)

For each given linear transformation, find the kernel and range. Also
determine whether it is bijective or not.

o)

|| | 3% + 9z
sz a _31‘2_1‘1

Let 77 and 7; are defined as follows:

T (xy, 2, x3) = (42, — 22, + 19, — 7 — 325),

dx, — 2z,

Ly ™ Xy

2) S

Ty (xy, g, x3) = (z; + 22y, — 23, 42, —x3).
(1) Find the standard matrix for each 7} and 7,.

(2) Find the standard matrix for each 7, 7, and 7} T5.

Let x,zE R? be moved by two linear transformations 7" and S, where

b | o]
Find (S - 7)(x).
RN IX RR Y[R IF R

Answer the following questions.
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(1) Find the dimension of the null space of the following matrix by using the
Sage.
2 5 —3 7 1 3
5 —2 9 8 4 —2
—4 3 8 11 —5 2
11 0 —2 4 10 —1

A:

(2) Let T, be a linear transformation corresponding to the above matrix A.
Determine whether w= (5, —2, —3, 6) is in the range of 7, by using the

Sage.

10 z|[cos§ —sind 0|1 0 —x x
Let [R)]=1]0 1 v,||sin® cos® 0||lo 1 —y,|. Find [R,] | y| by using the
00 1 0 0 1lloo 1 1
Sage.
var('t")
var('x0")
var('y0')

A=matrix(3,3,[1, 0, x0, 0, 1, yO, 0, 0, 1]);
B=matrix(3,3,[cos(t), -sin(t), 0, sin(t), cos(t), 0, 0, 0, 1]);
C=matrix(3,3,[1, 0, -x0, 0, 1, -y0, 0, 0, 1]);

D=Ax*B*C

print D

var('x')

var('y')

E=matrix(3,1.[x, vy, 1]):

F=D+E

print F

[x*xcos(t) - x0*xcos(t) - y*sin(t) + yO=*sin(t) + x0]
[x*sin(t) - x0xsin(t) + y*cos(t) - yO*xcos(t) + yO]
[ 1]
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7.1 Properties of bases and dimensions
7.2 Basic spaces of matrix

7.3 Rank-Nullity theorem

7.4 Rank theorem

7.5 Projection theorem

*7.6 Lleast square solution

7.7 Gram-Schmidt orthonomalization process
7.8 QR-Decomposition; Householder transformations
7.9 Coordinate vectors

Exercises

The vector space R" has a basis, and it is a key concept to understand the
vector space. In particular, a basis provides a tool to compare sizes of different
vector spaces with infinitely many elements. By understanding the size and
structure of a vector space, one can visualize the space and efficiently use the
data sitting contained within it.

In this chapter, we discuss bases and dimensions of vector spaces and then study
their properties. We also study fundamental vector spaces associated with a matrix
such as row space, column space, and nullspace, along with their properties. We
then derive the Dimension Theorem describing the relationship between the

dimensions of those spaces. In addition, the orthogonal projection of vectors in R?
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will be generalized to vectors in R", and we will study a standard matrix
associated with an orthogonal projection which is a linear transformation. This
matrix representation of an orthogonal projection will be used to study
Gram-Schmidt Orthogonalization and QR-Factorization.

It will be shown that there are many different bases for R", but the number of
elements in every basis for R" is always n. We also show that every nontrivial
subspace of R" has a basis, and study how to compute an orthogonal basis from
the basis. Furthermore, we show how to represent a vector as a coordinate vector
relative to a basis, which is not necessarily a standard basis, and find a matrix
that maps a coordinate vector relative to a basis to a coordinator vector relative
to another basis.

[Mathematicians in a Dish]
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I

7 1 ~, Properties of bases and dimensions
[ |

@ Lecture Movie : http://youtu.be/or9c97J3UkO, http://youtu.be/172stJmormk
e Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—9—sec—7—1.html

Having learned about standard bases, we will now discuss the concept of

dimension of a vector space. Previously, we learned that an axis
representing time can be added to the 3-dimensional physical space. We

will now study the mathematical meaning of dimension. In this section,

we define a basis and dimension of R" using the concept of linear

independence and study their properties.

Basis of a vector space

Definition  [Basis]

If a subset S= {VI, Vos e vs} of R"™ satisfies the following two

conditions, then § is called a basis for R":

(1) § is linearly independent; and
(2) span(S)=R".

w (1) If V is the subset of R"™ consisting of all the points on a line going
through the origin, then any nonzero vector in V forms a basis for V.

(2) If a subset ¥V of R" represents a plane going through the origin,
then any two nonzero vectors in V' that are not a scalar multiple of the

other form a basis for V. [ |
Yy
2
D
3 T
S50
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e, = (1,0), e, =(0,1). Since S is linearly
|

' Let S={e;, e,} where

independent and spans R?, § is a basis for RZ2.

In general 5= {e, e,, , €,} is a basis for R", and it is called the standard

basis for R".

How to show linear independence of vectors in R"?

Set of vectors x;, ...,x, in R" is linear independent if

X, texy++e,X, =0 = ¢ =cp==¢, =0

Let A= [X;:X,: = :X,,| where x;'s are column vectors and ¢ = [ey - cm]T. If
the homogeneous linear system Ac=0 has the unique solution c¢c=0, then the

columns of the matrix A are linearly independent. In particular, for m=mn,

det A# 0 implies the linear independence of the columns of A.

Theorem 7.1.1

The following n vectors in R"

X1 = (1'117 L1929 weus 171n)7 e X T (-1'711’ Tpos wees xnn)

are linearly independent if and only if

L11 o1 - Tpa
A= : £ 0.
Lin Lop =+ Tpp

ol For crs.c, ER,

Xy + - +ex,=0
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T11 L2 Lin &1 T ey T ey,

x T T Ci1To T CoTgy T+ x
= ¢ P21 + ¢ Fa2 ot m| _ | G2 2% 22 nlon | _

Tn1 T2 Tnn C1Tp1 +02$n2 +"'+C”$”n

This gives us the following linear system

Ty Lyg 0 Ly G 0
Tor Tag 0 Tay || C2|_ | O
Ty Tpy 0 Ty Cp 0

This linear system has the trivial solution (c,¢y....,c,) =0, i.e.,

=0, ..,¢c,=0 if and only if A# 0. Therefore x;, ...,x, are linearly

n

independent if and only if A# 0. [ |

By Theorem 7.1.1, the following three vectors in R*

X1:(172a3)7 X2:(71a Oa2)7 X3:(37 1) 1)

1—-13
are linearly independent because A ={2 01| =92 0.0
3 21

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

xl=vector([1, 2, 3])

x2=vector([-1, 0, 2])

x3=vector([3, 1, 1])

A=column_matrix([x1, x2, x3]) # Generating the matrix with x1, x2,
# x3 as its columns in that order

print A.det()

9 |

We can also use the inbuilt function of Sage to check if a set of vectors
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. Since

are linearly independent.

V=RR"3;x1=vector([1, 2, 3]);x2=vector([-1, 0, 2]);x3=vector([3, 1, 1])
S=[x1, x2, x3]
V.linear_dependence(S)

Show that §={x,, x,, X3} with x,=(1,0,0), x,=(1,1,0), x,=(1,1,1) is

a basis for R3.

To show that S={x,, X,, x;} is a basis for R*, we need to show that §

is linearly independent and it spans R®. O

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

A=matrix(QQ, 3, 3, [1, 1, 1, 0, 1, 1, 0, 0, 1))
print A.det()

the computed determinant above is not zero, S§= {xl,xz, x3} is linearly

independent. We now show that S spans R?®. Let x = (z,y, z) be a vector in

R®. Consider a linear system x = ¢;X; + X, +¢3X; in ¢, ¢y, ¢;. Note that if this

linear

system has a solution, then x = (z,y, z) is spanned by S§. The linear

system can be written as

(z,9, 2)=¢,(1,0,0)+¢y(1,1,0)+¢;(1, 1, 1), (¢; ER)

= (cl+62+63, ¢y +c3, 63),

more explicitly, we have a linear system in ¢, ¢y, ¢,

e teyte; =z (1)
cyte3 =y
cy =z
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Hence we need to show that the linear system (1) has a solution to show that §

111
011
001

invertible, so the linear system (1) has a solution.

spans R*®. Indeed, the coefficient matrix of the linear system (1) is

Theorem 7.1.2

Let S={xy; X, .., X,} be a basis for R". For r>n, any subset
T= {yl, Vor v yr} of R" is linearly dependent. Therefore, if 7' is

linearly independent, then r must be less than or equal to n.

http://matrix.skku.ac.kr/CLAMC/chap7,/Page6.htm

Since § is a basis for R", each vector in 7= {y, y,, .., y,} can be written
as a linear combination of x;,X,, ..., x,. That is, there are a; &R such
that
n
Y, = aX; TagXy +ta,x, = Zaijxi, (j=1,2, .., 7) (2)
i=1
We now consider a formal equation with ¢y, ¢y, ..., ¢, ER:

.
chyj =yt oy, t+e¢y. =0.
j=1

Then, from (2), we get,

i=1\j=1

=0

n
Z aiX;

i=1

T

i=1

Since Xy, X5, ..., X,, are linearly independent,
,
Za’uc]:() (VZ:1727 7n)
j=1
Hence we get the following linear system
ay ¢, ++ay,c, =0
ay ¢+ +ayc, =0 (3)

a, ¢+ +a,c =0
The homogeneous linear system (3) has r unknowns, ¢, ¢y, =+, ¢, and n
linear equations. Since r > n, the linear system (3) must have a nontrivial
solution. Therefore, 7' is linearly dependent. [ |
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Theorem  7.1.3

If S ={x,x, ...x,} and 7 ={y;, ¥y .., V¥,} are bases for R", then

n =m.

The proof of this theorem follows the theorem 7.1.2.

There are infinitely many bases for R". However, all the bases have the same

number of vectors.

Definition  [Dimension]

If §is a basis for R", then the number of vectors in § is called the

dimension of R" and is denoted by dim R".

Note that dimR”" =n. If its subspace V is the trivial subspace, {0}, then

dimV=0.

Theorem 7.1.4

For §={x, X,, ..., x,} € R", the following holds:

(1) If S is linearly independent, then S is a basis for R".
(2) If § spans R" (i.e., <S> =R"), then S is a basis for R".

The determinant of the matrix having the vectors

x,=(1,2, —1), x,=(1,3,1), x,=(2,0,0) in R? as its column vectors is

=10# 0.

— N =
— o =
O O N

Hence §= {x;, X,, X3} is linearly independent.

By Theorem 7.1.4, S is a basis for R?.
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Theorem 7.1.5

If S={vy, vy .., v} is a basis for a subspace V of R", then every

vector v in V can be written as a unique linear combination of the
vectors in 5.

ZE  Since S spans V, a vector v in V can be written as a linear combination

of the vectors in S. Suppose
V= tlvl + t2V2 + + thk al’ld V= t’lvl + t,QVQ + + t,kvk.

By subtracting the second equation from the first one, we get
O: (t] - t/l )Vl + (tQ - t,2 )Vz +"' + (tk‘ - t,k)Vk

Since § is linearly independent, t, —t';, =0, t, —t'5 =0, =, t,—t, =0.

Therefore v=t,v, +t,v, +--+1¢,v, is unique. |

[Remark] Many a times a basis of R" is defined to a set which satisfies conditions
of theorem 7.1.5.

Let §={v,=(1,0,0),v,=(0,1,0),v;=(0,0,1), v, = (1,1, 1)}. Then
v=(3,4,5)=3v, +4v, +5v; +0v,.
However, the vector v can also be written as follows:
v=10(3,4,5)=4(1,0,0)+5(0,1,0)+6(0,0, 1)— (1, 1, 1)
and

v=(3,4,5)=2(1,0,0)+3(0,1,0)+4(0,0, 1)+ (1,1, 1).

This is possible because S is not a basis for R?. [ |
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~, Basic spaces of matrix

B @ Lecture Movie : http://youtu.be/KDMO—KBjRoM, http://youtu.be/8P7cd—Eh328

@ Lab : httn://matrix.skku.ac.kr/knou—knowls/cla—week—9—sec—7—2.html

Associated with an m Xn matrix A, there are four important vector
spaces: row space, column space, nullspace, and eigenspace. These
vector spaces are crucial to study the algebraic and geometric

properties of the matrix A4 as well as the solution space of a linear

system having A as its coefficient matrix. In this section, we study the
relationship between the column space and the row space of 4 and

how to find a basis for the nullspace of 4.

Eigenspace and null space

Definition  [Solution space, Null space]

The eigenspace {(xeR"| Ax=)x} of an nxn matrix 4 associated to
an eigenvalue )\ is a subspace of R". The solution space of the

homogeneous linear system Ax = 0 is also a subspace of R". This is
also called the null space of 4 and denoted by Null(A4).

Eigenspace Row Space

Matrix
ADXH

Nullspace " Column Space
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Basis and dimension of a solution space

Let A4 be an nXxXn matrix. For given augmented matrix [4: 0] of a
homogeneous linear system with Ax=0, by the Gauss-Jordan Elimination, we can

get its RREF [B: 0]. Suppose that matrix Bhas (1 < r< n) nonzero rows.

(1) If »=n, then the only solution to Ax =0 is x = 0. Hence the dimension of
the solution space is zero.
(2) If r < n, then with permitting column exchanges, we can transform [B: 0]
as

(1 0 0 0by,qyby, 0

1 0 - 0 b27,+1 oo b2n o0

[B O]A) 0 0 0 - 1 brr+1"' brn 0
o 0 0- 0 0O -« 0 : 0

L0 0 0 - 0 0O - 0 : 0

Then the linear system is equivalent to

Ty = _b1r+1xr+1 _b17'+2$r+2_'” _bln‘rn

Ty = _b27’+1xr+l _b2r+2$7'+2_”' _anwn

L. = _b7‘7‘+1$r+1 _b'rr+2x7'+2_“- _b,,,”l‘,"
Here, z,.{, 2,19, ..., x, are n—r free variables. Hence, for any real numbers
S1s vy Sp_,, Setting z.,,=s,, ..., ¢, =s,_,, any solution can be written as a

linear combination of n—r vectors as follows:

1 -_bl r+1w -_b1r+2- [— by 71_

,xQ — by — by o — by,

Tr _brr+1 _br7'+2 brn
X = |Trt1|= 8 1 + 5y 0 +ets, 0
Lyt2 0 1 0
T,y 0 0 :
: : : 0
L xn | - 0 J - 0 h - 1

Since sy, ..., s are arbitrary,

n—r
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[— by 7‘+1— — b1r+2— [— b1nr
— by, 41 —byy o — by,
_brr+1 _b7'7'+2 _brn
vy = 1 ’ vy, = 0 ’ ’ Vn*r: 0
0 1 0
0 0 :
: 0
0 0 1

are also solutions to the linear system. Hence, the previous linear combination
of the n—r vectors can be written as

X =5V, +s3vy+ - +s5,_,V,_ ..

This implies that S={v;, v,, .., v, .} spans the solution space of Ax =0. In
addition, it can be shown that 9 is linearly independent. Therefore S is a basis
for the null space {x€R"|4x =0} of 4 and the dimension of the null space is

n—r.

Definition  [Dimension of Null space]

For an m Xn matrix 4, the dimension of the solution space of Ax =0
is called the nullity of 4 and denoted by nullity(4). That is, dim Null
(A)=nullity(A4).

' For the following matrix A4, find a basis for the null space of A4 and the

nullity of 4.

1 1 0 2
l=2-2 1-5
A=17 1-1 3
4 4-1 9

The RREF of the augmented matrix [4: 0] for Ax =0 is

SO O
OO O
oo =O
OO~
(e enllen il an]
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Hence the general solution is

.Tl _x2_2$4 _S_2t

-1 —2
Lo ) S 1 0
= = = = [
x o . ; s 0 +¢ . (s, t€ R ).
4 4 t 0 1

Therefore a basis and the dimension of the null space of A4 is

, nullity(4)=— 2. [ |

— 0N

Find a basis for the solution space of the following homogeneous linear
system and its dimension.

4z, + 122y —Tz3 +624 =0

z,+ 3z, =223+ x4, =0

3z + 92y, =223+ 112, =0

Using Sage we can find the RREF of the coefficient matrix A4:

A=matrix(ZZ, 3, 4, [4, 12, -7, 6, 1, 3, -2, 1, 3, 9, -2, 11))
print A.echelon_form()

[1 3025]
(001 2]
[0 00 0]

Hence the linear system is equivalent to

:El == 73:,52 75-/,54
:133 721’4

Since z, and =z, are free variables, letting x, =r, z, =s for real numbers

r, s, the solution can be written
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! —3r—3>5s -3 -5

_ %2 T B 1 0
X = s = 96 =r 0 +s —9
T, s 0 1

Hence we get the following basis and nullity:

S=1{(-3,1,0,0), (=5,0, —2, 1)}, nullity(4)=2 O

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

(O Finding a basis for a null space

A=matrix(ZZ, 3, 4, [4, 12, -7, 6, 1, 3, -2, 1, 3, 9, -2, 11])
A.right_kernel()

Free module of degree 4 and rank 2 over Integer Ring
Echelon basis matrix:

[1 3 4 -2]

[0 5 6 3]

@ Computation of nullity

A.right_nullity()

Column space and row space

Definition

Ay Qi - Gy
. : _ | @21 Qg2 -+ Qoy .
For given mXxXn matrix 4= |.7 . . . the vectors obtained
A1 Q2 Apn
from the rows of 4
A(1):[a11 iy aln]7 A(?):[a21 Qg a?n]7
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) A(m):[am Apa amn]

are called row vectors and the vectors obtained from the columns of

A
Qg a1 A1y,
(1) _ | Q21 (2) _ | Q22 (n) _ | Q2n
A . 9 A - . ) e ) A - :
Ay 1 () Ay

are called column vectors. The subspace of R" spanned by the row

vectors A(1>,,__,A( ). that is,

< A(])yyA(m) >

is called the row space of 4 and denoted by Row(4). The subspace

of R™ spanned by the column vectors A", . 4" that is,
<A(1>, ,A(">>

is called the column space of A, and denoted by Col(4). The
dimension of the row space of A4 is called the row rank of A, and the
dimension of the column space of A is called the column rank of A4.
The dimensions are denoted by r(A4) and ¢(A4), respectively, that is,

dim Row(A4) = r(4), dim Col(4) =c¢(4)

Theorem 7.2.1

If two matrices A, B are row equivalent. then they have the same row
space.

http://www.millersville.edu/~bikenaga/linear-algebra/matrix-subspaces/matrix-subsp

aces.html

Note that the nonzero rows in the RREF of A4 form a basis for the row space of

A. The same result can be applied to the column space of A.
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w For the following set S, find a basis for W=< .5 > which is a subspace
of R?:

S: {(172’ 173’2)’ (3’479’077)7 (273’57178)7 (27278’ _3’5)}

Note that the subspace W is equal to the row space of the following
matrix

NN W
N W ok N
co Ot ©
W= O W
U 00 N N

By Theorem 7.2.1, it is also equal to the row space of the RREF of 4

0 —39
0 31
1 =7
0

7
-3
0
0 0

0
1
0
0

SO O

Therefore the collection of nonzero row vectors of B
{(1,0,7,0,-39), (0,1, -3,0,31), (0,0,0,1, —=7)}

is a basis for W= Row(4).

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

A=matrix(4, 5, [1, 2, 1, 3, 2, 3,4,9,0, 7, 2,3,5, 1,8, 2, 2,8, -3, 5]
A.row_space()

Free module of degree 5 and rank 3 over Integer Ring
Echelon basis matrix:

[ 1 0 7 0-39]

[ 0 1 -3 0 31]

[ O 0O 0 1 -7] [ |

Find a basis for the column space of 4:
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NN W
N W N

co UT©
WO Ww
T 0O N N

132 2
243 2
The column space of A4 is equal to the row space of AT=1195 8.
301-—3
278 5
By Theorem 7.2.1, it is also equal to the row space of the RREF of A4 7:
100—1
010 1
B=|001 0.
000 O
000 O
1 0 0
Therefore S= 8 , (1) , ? is a basis for the column space of A.
-1 1 0

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

A=matrix(4, 5, [1, 2, 1, 3, 2,3, 4,9,0, 7,2, 3,5 1,8, 2 2,8, -3, 5]
A.column_space()

Free module of degree 4 and rank 3 over Integer Ring

Echelon basis matrix:

[1 0 0 -1]

[0 1 0 1]

[0 O 1 O] [ |

Theorem  7.2.2

For A= [a;] the column rank and the row rank of A4 are equal.

mXn?

For the proof of theorem 7.2.2, see http://mtts.org.in//expository-articles

The same number for the column rank and the row rank of A4 is called the
rank of A, and denoted by
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r(4)=c(A4)=rank(4)

[Remark] Relationship between vector spaces associated with a matrix 4

e Row(AT)=Col(4), Col(4T)=Row(A),
e Row(A)* =Null(4), Null(4)* —Row(A4),

o Col(4)* =Null(4” ), Null(4” )* =Col(4)
http://linear.ups.edu/html/section-CRS.html

w For a(# 0)€R", a‘ z{(xl,xQ, o x,) ER™| a1x1+m+anacn=0} is a

hyperplane of R". It is easy to see that a* is a subspace of R". [ |

m (1) If a=(1,2)€R?. Then

at = {(:z:l, z,)ER? [ 2, + 22, = O}Z {a(=2,1)laER}
is a line in the plane passing through the origin perpendicular to the
vector (1,2).
(2) Let a=(1,1,1)€R?. Then

at = {(ml,xQ,xS)E R?| x4+ zy+ 2, 20}

is the plane in R?® passing through the origin and perpendicular to the
vector (1,1,1). W

ILAS
2010
16TH CONFERENCE OF THE RS ANES

INTERNATIONAL LINEAR
ALGEBRA SOCIETY

Pisa, ITALY. JUNE 21-25, 2010

[International Linear Algebra Society] http://www.ilasic.org/
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~, Dimension theorem (Rank-Nullity Theorem)

| e Lecture Movie: http://youtu.be/ez7_JYRGsb4, http://youtu.be/bM—Pze0sugo
o Lab: http://matrix.skku.ac.kr/knou—knowls/cla—week—9—sec—7—3.html

In Section 7.2, we have studied the vector spaces associated to a matrix

A. In this section, we study the relationship between the size of matrix

A and the dimensions of the associated vector spaces.

Rank

Definition  [rank]

The rank of a matrix A4 is defined to be the column rank (or the row
rank) and denoted by rank(A4).

Let A be an mXxn matrix. f U=RREF(4), then U can be written as the
following:

v :
U=\ . |m

Hence rank(A4)=r and nullity(4)=n—r.

Theorem  7.3.1 [Rank—Nullity theorem]

For any A= [a;l, «,. we have
rank(A4)+ nullity(4)= n

For the proof of theorem 7.3.1, see http://linear.ups.edu/html/section-IVLT html

The Rank-Nullity Theorem can be written as follows in terms of a linear

transformation: If A€M is the standard matrix for a linear transformation

mXn
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T7: R"-> R™, then

Hence

- D)

dim (Im (7)) =rank(A4), dim(ker(7)) = nullity(4).

dim(Im (7)) +dim (ker (7)) =dim (R") =n.

121 32 10 70—39
1349 07| . _lo1-30 31
The RREF of 4 = 535 18| IS B= 00 01 —7|° Hence rank(A4)
22835 00 00O 0
= 3. Since n=5, the dimension of the solution space for Ax =0 is
equal to nullity(4)=5—3 = 2. [ |

Compute the rank and nullity of the matrix A, where

—_ o = =
[
= O
W W N =
T N

The RREF of A can be computed as follows

A = matrix(ZZ, 4, 5, [1, -2, 1, 1, 2, -1, 3,0, 2, -1, 0, 1, 1, 3, 4, 1, 2, 5,
13, 5])
A.echelon_form()

[10370]
[01130]
(0000 1]
(0000 0]

Hence rank(4)= 3, and by Theorem 7.3.1,
nullity(4) =5—rank(4)=5—3=2. [ |
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(=]t [m]

Op e

e http://matrix.skku.ac.kr/RPG_English/7-B2-rank-nullity.html

http://sage.skku.edu

print A.rank() # rank computation

print A.right_nullity() # nullity computation

Theorem 7.3.2

A linear system Ax = b has a solution if and only if

rank(4) = rank[4 : b].

Let A= [a‘ij]an' X = (x17 Los v LL'"), b = (bl’ b?’ see? bm)' Then the hnear
system Ax =b can be written as

a1y Q12 A1y by
Qo1 QA2 Ay | | by

2% I el 2% N e o o N e T T (1)
Ay q 2% Ay bm

Hence we have the following:

Ax = b has a solution. & There exist z,,z,, ..., , satisfying the linear system (1).
& b is a linear combination of the columns of A.
& beCol(A)
e rank(4) = rank[4 ! b]. [ |
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) r—2y+2z=1
The linear system xz+4y+3z =2 has its matrix-vector representation

22+ 2y+5z =3
1—-2 2| |z 1

1 43|yl =12].

2 2 5]z 3

A = matrix(ZZ, 3, 3, [1, -2, 2, 1, 4, 3, 2, 2, 5])
b = vector([1, 2, 3])

print A.rank() # rank(A)
print A.augment(b).rank() # rank[A : b]

Since rank(4) =2 =rank[4 ! b], Theorem 7.3.2 implies that the linear
system has a solution. [ |

Definition ~ [Hyperplane]

Let a= R" be a nonzero vector. Then
at ={x=R"|la- x=0} is called the orthogonal complement of a.
(This can be understood as the solution space of a- x=x’a=0.) The

orthogonal complement of a is a hyperplane of R".

Note that dim a* =nullity(a’)=n—1.

Theorem 7.3.3

LetW be a n—1 dimensional subspace of R". Then W=a' for some

nonzero vector a€ R".

Since dim W=n—1, by the Rank-Nullity Theorem, dim W* = 1. Thus

W+ = span{a} for a nonzero vector a. Therefore

w=(w*)* = (spanf{a})* =a*. [ |
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~ Rank theorem
I
| e Lecture Movie : http://youtu.be/8P7cd—Eh328 http://youtu.be/bM—PzeOsugo

o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—9—sec—7—4.html

In this section, we study the relationship between the rank of a matrix

A and the theorems that is related to the dimension of subspaces

associated to 4.

Theorem 7.4.1 [Rank theorem]

For any A= [a;] dim Row(A4)=dim Col(A4).

m Xn?’

http://ocw.mit.edu/courses/mathematics/18-701-algebra-i-fall-2010/study-materials
/MIT18_701F10_rrk_crk.pdf [ |

Theorem 7.4.2

For any A= la;l,, «,. rank(4) < min {m, n}.

Since dim Row(4) < m, dim Col(A4) < n, and rank(A4)=dim Row(A4)=dim Col
(A4), it follows that rank(4) < min {m, n} [ |

Theorem 7.4.3 [Rank theorem]

Given A = [a;;] the followings hold:

m Xn>

(1) dim Row(A4)+dim Null(4)= the number of columns of A(that is,
rank(A4)+nullity(A4)=n).

(2) dim Col(A4)+dim Null(4 7)=the number of rows of A(that is, rank(A4)
+nullity(4 7)=m).

(1) follows from Theorem 7.3.1,
(2) follows from the fact that Row(A7)=Col(4) and rank(A4)=rank(47”)
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along with replacing 4 in (1) by A7, |

Theorem 7.4.4

For a square matrix 4 of order n, A is invertible if and only if
rank(4)=n.

If A is invertible, then Ax=0 has the trivial solution only and hence
Null(4)= {0}, giving nullity(4)=0. By the Rank-Nullity Theorem, we have

rank(A4)=n. This can be reversed. [ |

Find the rank and nullity of the following matrix:

1 3 1 7
A= 2 3—-1 9
-1 -2 0-5

Using Gaussian Elimination,

1 3 1 7} (—2)R1+RQ 1 3 1 7
9 3-1 9| ——1""2% |g-3-3—5
~1-2 0-5 By + Ry o 1 1 2
1317
(—1)R, 0335
W3R+ 5 |o oL
3
Ws) 1317
1/3)R
E 0112
3R, 3
000 1
Comin 10—22
3R, +
— 272 "L lo1 1 % = U=REF(A4).
000 1

Hence rank(4)=3 and the Rank-Nullity Theorem gives 4—rank(4)=
4—3=1=nullity(4).

http://sage.skku.edu

A=matrix(3, 4, [1, 3, 1, 7, 2, 3, -1, 9, -1, -2, 0, -5])
print A.rank() # rank computation
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print A.right_nullity() # nullity computation

Theorem 7.4.5

For matrices 4, B with multiplication AB defined, the followings hold:

1) Null(B)c Null(4B).

)
2) Null(4 7)c Null((4B)7).
3) Col(AB)c Col(A).
)

(
(
(
(4) Row(AB)c Row(B).

We prove only (1) here. For
XENull(B) = Bx=0 = (4B)x= A(Bx)= A0=0.
x < Null(4AB)

Theorem 7.4.6

rank(A4B) < min{rank(4), rank(B)}.

Follows from theorem 7.4.5.

Theorem  7.4.7

Multiplying a matrix B by an invertible matrix A={[a;l,., does not

change the rank of B. That is, if |A4| # 0, then

rank(A4 B)=rank(B)=rank(BA).

Follows from theorem 7.4.6.
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Theorem 7.4.8

Suppose 4 = [a,;],, <, has rank(4)=r. Then

(1) Every submatrix C of A satisfies rank(C) < r.
(2) A must have at least one rxXr submatrix whose rank is equal to r.

(1) Suppose the submatrix C is obtained by taking s rows of 4 (we let B
be this matrix consisting of the s rows of 4) and taking ¢ columns of
B. Since Row(B) < Row(A4) and Col(C) ¢ Col(B), the result follows.

(2) Since the rank of A4 is r, there are r linearly independent rows of A.
Then the matrix B consisting of the r linearly independent rows has the
rank equal to r. We now form a matrix ¢ by taking r linearly
independent columns of B. Then (C is an rXr submatrix of 4 whose

rank is equal to r. [ |

Main Theorem of Inverse Matlrices

Theorem  7.4.9 [Equivalent statements of invertible matrices]

For an nXxXn matrix A4, the following are equivalent:
(1) A4 is invertible.

(2) det(4)# 0.

(3) 4 is equivalent to 7.

(4)

*(5)

A is a product of elementary matrices.

A has a unique LDU-factorization. That is, there exists a
permutation matrix P such that PA=LDU where L is a lower
triangular matrix with all the diagonal entries equal to 1, D is an
invertible diagonal matrix, and U is an upper triangular matrix
whose main diagonal entries are all equal to 1.

6) For any nx1 vector b, A4x = b has a unique solution.
7

(6)
(7) Ax = 0 has the unique solution x=0.

(8) The column vectors of A are linearly independent.
(9)

9) The column vectors of 4 span R".
*(10) A has a left inverse. That is, there exists a matrix X of order n

such that X4 = 1.
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(11) rank(A4)=n.

(12) The row vectors of A4 are linearly independent.

(13) The row vectors of 4 span R".

x(14) A has a right inverse. That is, there exists a matrix X of order n
satisfying AX = 1.

(15) T, is one-to-one.

(16)
(17) X=0 is not an eigenvalue of 4.
(18) nullity(4) =0.

7, 1s onto.

We first prove the following equivalence:

® (10) = (7) = (8) = (11) = (10) () ==—22)
(10) = (7): Suppose A has a left inverse X such that @y &= ("7f\lm
XA =1 1If x satisfies Ax=0, then XA =TI gives /

((O): (n) €=' ()

x=Ix=(XA4)x=X(4x)=X0=0.

D) (3) ) =G
Hence Ax=0 has the unique solution x=0. \(\lq):=}(2)/ (n)

7

(7) = (8): Suppose Ax =0 has only the trivial solution. If v, denotes the kth

column vector of 4 and x= [a; @y - a,]”, then
vy tagvyt v, =0 & Ax=0 = x=0 e ;=012 i< n
Hence the set {v;,v, --,v,} of the column vectors of A4 is linearly independent.

(8) = (11): Suppose the column vectors of A are linearly independent. Then
rank(4), which is equal to the maximum number of linearly independent columns

of A, is equal to n.

(11) = (10): Suppose rank(4)=n. Then the rows of A are linearly independent.
Let e, be the kth standard basis vector. Then the following linear systems

Alx=e,, 1< k< n
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are consistent for all k, since rank(A4’)=n=rank|A”:e,|. Letting x, be a
X,
X,

solution to the linear systems, X = is a left inverse of A.

X,
@ (1) = (6) = (14) = (2) = (1)
(1) = (6): Suppose A is invertible. Then, for any nx1 vector b,

A(A " 'D)=(A4A HYb=Ib=h.

Hence Ax=b has a solution x,=4 'b. For the uniqueness of the solution,

suppose x is another solution. Then
x=Ix=(A""A)x=A4 '(4x)=A4 'b=x,.

Therefore Ax=b has a unique solution.
(6) = (14): Suppose that for each nx1 b, the linear system Ax = b has a unique

solution. If we take b to be e,, the kth standard basis vector, then the following

linear system
Ax=e;,, 1< k< n

also has a unique solution. If x, is the solution to the linear system, then the
matrix X= [x; X, -+ X,] is a right inverse of A.

(14) = (2): Suppose A has a right inverse X such that AX =7 Then

det(A)det(X)=det(4AX)=det(Z)=1.
Hence det(4)# 0.

(2) = (1): Suppose det(4)# 0. If we let Bzde%(A)adj (4), then it can be shown
that

AB= BA=1
Hence A4 is invertible. [ |
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~, Projection Theorem

[ | @ Lecture Movie : http://youtu.be/GIcA48SmIM, http://youtu.be/Rvird3u—oYg

e Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—10—sec—7—5.html

In Chapter 1, we have studied the orthogonal project in R*® where the
vectors and their projecttions can be visualized. In this section, we

generalize the concept of project in R"™. We also show that the
projection is a linear transformation and find its standard matrix, which
will be crucial to study the Gram-Schmidt Orthogonalization and the
QR-Decomposition.

Orthogonal Projection in R*

7

@) &

W=X—D

Projection (in 1-Dimension subspace) on R”

Theorem 7.5.1 [Projection]

For any nonzero vector a in R", every vector x€ R" can be expressed
as follows:

X=Dproj.,.X +w=tatw= ptw,

where p is a scalar multiple of aand w is perpendicular to a.

Furthermore, the vectors p, w can be written as follows:

——a, W=X—D.
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The proof of the above theorem is similar to that in case of orthogonal projection
in the R? and R*.

In the above theorem, the vector p is called the orthogonal projection of x onto

spania} and denoted by proj_,.x= ﬁa. The vector w is called the orthogonal
a

complement of the vector a.

Definition  [Orthogonal projection on R"]

The transformation 77 : R" - R" defined below
. X- a
T(x) = proj . ,-Xx=-——-a
llall
is called the orthogonal projection of R™ onto span{a}.

It can be shown that the orthogonal projectionT(x)Zproj<a>x is a linear

transformation.
(http://www.math.lsa.umich.edu/~speyer/417/0OrthoProj.pdf)

Theorem 7.5.2

Let a be a nonzero column vector in R". Then the standard matrix of
T(x) =proj . ,. x= Px
is

1
P= TaaT.
a da

Note that P is a symmetric matrix and rank(P)=1.

For the proof of this theorem, see the website:
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/least-squ
ares-determinants-and-eigenvalues/projections-onto-subspaces/MIT18_06SCF11_Ses
2.2sum.pdf
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0 Using the above theorem, find the standard matrix P, of the orthogonal

projection in R? onto the line y= (tanf)z passing through the origin.

This is a problem of finding the orthogonal projection of a vector x
onto the subspace spanned by a vector a. Hence we take a as a unit
vector u on the line y=(tanf)z. Since the slope of the line is

ind .
tang = 27 =[C.030] and |lul>= 1. Therefore, by the previous
cosf sind
theorem,
_ 1 1 T_[cos@] . 1| cos?0 sinfcosd
Py = M T ™ T T [sing lcosfsinf]= | heoso sin

M Find the standard matrix P for the orthogonal projection 7' in R? onto
the subspace spanned by the vector a= (1, —4, 2).

1 1 1—4 2
ala=[1—42]|—4|=21, aa’=|—4|[1 —42]=|-4 1638
2 2 2—-8 4
) L] o1ma 2
Hence, P= ——aa’ = -—|-4 16 -8 u
a'a e T
x\ /"z
C.
W
Y
' e 7
- N
-
>
WIKIMEDIA
COMMONS

http://en.wikipedia.org/wiki/Fischer_projection
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Projection of x on subspace W in R”

Theorem 7.5.3

Let W be a subspace of R". Then every vector x in R" can be

uniquely expressed as follows:
x=X,+X, where x,€ W and x,& W*.

In this case x; is called the orthogonal projection of x onto W and is

denoted by proj ;, x.

w
XN

Xo TN
I
/ﬁ
i
I
]
Xy :
]
I

X; =DProj yX, X, =X—X; = Proj y.X

http://www.math.lsa.umich.edu/~speyer/417/OrthoProj.pdf

Theorem 7.5.4

Let W be a subspace of R". If M is a matrix whose columns are the

vectors in a basis for W, then for each vector x€R"

proj yx= MM"M) "M%,

http://www.math.lsa.umich.edu/~speyer/417/0OrthoProj.pdf
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w Find the standard matrix for the orthogonal projection
plane xz—4y+2z=0.

The general solution to x—4y+2z=0 is

4
1
0

-2
0| (¢, t,ER).
1

= tl = tl
t

T 4t1 - 2t2
+ t2

4—2
Hence, by taking M= [1 0
0 1

-8 5

20
NN 21

_ Tapn—17,7T_ 21 21 [ 410]_ 4
P_M(MM)M_é(l)lig —201]7| =
21 21 2

21

http://sage.skku.edu

4 —2
Since M™M= [_4 10] ll 0] = [ 17 _8] and (MTM)”—

in R? onto the

Thus {(4,1,0),(—2,0,1)} is a basis of the plane z—4y+2z=0.

. the standard matrix is P= MM M) ‘M7,

58
21 21
RERA
21 21
42
21 21
508
21 21
87

21 21

M=matrix(3, 2, [4, -2, 1, 0, O, 1])

print Mx(M.transpose()*M).inverse()*M.transpose()

[20/21 4/21 -2/21]
[ 4/21 5/21 8/21]
[-2/21 8/21 17/21]

e The standard matrix P for an orthogonal projection is
idempotent (P?= P).
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[Remark]

Simulation of the projection of two vectors

e http://www.geogebratube.org/student/m9503

- (962,536)

(220758 @

(65,395)

p= (495,276)

(0.04,874)

A

(002,398)

¢
A

Math & Art

L]
(butterfly)

=S
(pinwheel)

z
(rhodenea)

SuUHE
(Gear)

WMade by Sun- M Yoon, Jae-Yoon Lee and Prof, Sang-Gu Les
Copyright @ 201 4 SKKL Matrix Lab,

http://matrix.skku.ac.kr/mathLib/main.html
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~ * Least square solutions

[
| e Lecture Movie : https://youtu.be/BC9geR0JWis
e Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—10—sec—7—6.html

Previously, we have studied how to find solve the linear system Ax=Db
when the linear system has a solution. In this section, we study how to
find an optimal solution using projection when the linear system does

not have any solution.

M Details can be found in the following websites:
http://www.seas.ucla.edu/~vandenbe/103/lectures/ls.pdf

M Least square solutions with GeoGebra
<Simulations> http://www.geogebratube.org/student/m12933

g =24m+628
Piliyzg)s (57 merl)
. 10
Bylx, %)= ( = T )
; B
Pyl %)= (75 Cll )
,

367

828 3724|suz) 1o ]m
242) \1sos ea J\-17e 222 21| '

y=2.42x+8.28

= (178,367)

M Least square solutions with Sage
<Simulations> http://matrix.skku.ac.kr/2012-album/11.html

Coefficient Matrix M

OG-
S

(e

S

[

Transpose of M

S
e
Cel

3 . MT+M

= o

MT+b

e o on

& o

M?T * M Inverse

Sle S ~—

Augmentend Matrix

-
Y

RREF

Ll e e e ——

+ on @
- o
ol
e

Solution(y=)
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Gram-Schmidt
| Orthonomalization process

[ | e Lecture Movie: http://youtu.be/gt4—EuXvx1Y, http://youtu.be/EBCi1nR7EUE
e Lab: http://matrix.skku.ac.kr/knou—knowls/cla—week—10—sec—7—7.html

Every basis of R" has n elements, but all the bases are distinct.

In this section, we show that every nontrivial subspace of R" has
a basis and how to find an orthonormal basis from a given basis.

[Remark]

The subspaces {0} and R" of R" are called trivial subspaces.

There are many different bases for R", but all the bases have n elements and

the number n is called the dimension of R".

Orthogonal set and orthonormal set

Definition
For vectors x;, X,, ..., X, in R", let
S={xy, Xy, ..., X}
If every pair of vectors in S is orthogonal, then S is called an

orthogonal set. Furthermore, if every vector in the orthogonal set S is

a unit vector, then S is called an orthonormal set.

The above definition can be summarized as follows:

S is an orthogonal set. e xx=0 (i#j)
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S is an orthonormal set. & X X, = { i=7) (:% Kronecker delta)

' (1) The standard basis {e,, e,, e; } for R® is orthonormal.

(2) In R* let x; = (0,1,0), x, = (2,0,1), x; = (1,0, —2). Then {x, X, x;}

is orthogonal, but not orthonormal.

2 1
3) In R® let y, = (0,1,0), y,= |—,0,—=|, y3=|—=,0, ———=|. Th
(3) In et vy, = ( ), ¥, ( = \/3) V3 ( = /_5) en

the set {y,, v, y3} is orthonormal.

n .
} 1S an

X
(4) If {x,,...x,} is an orthogonal set, then { H Xl T T
1 n

orthonormal set. W

Orthogondlity and Linear independance

Theorem 7.7.1

Let S ={x,,Xy .., X} be a set of nonzero vectors in R". If S is

orthogonal, then S is linearly independent.

For ¢, ¢y, ..., ¢, ER, suppose
ciX) Tt eXy+ o +¢x,=0.
Then, for each i (i=1, 2, ..., k),
(1%, + Xy + 4+ ¢x,.) X, =0 X,
That is,
e (X0 X))+ e (xy X))+ o o (x x)=0 %, =0

T

Since, for i # j, x; x;, =0, we have
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C; (X,L-‘ Xi) = CZ'HXZ-HZ =0 (2:1’ 2, . k)

Since x;# 0 implies lIx;[[>0 (i=1, 2, .., k), we have
cp=cy=  =¢.=0.
Therefore, S is linearly independent. [ |

Orthogonal Basis and Orthonormal Basis

Definition ~ [Orthonormal basis]
Let § be a basis for R". If § is orthogonal, then S is called an

orthogonal basis. If S is orthonormal, then S is called an orthonormal
basis.

E Sets in (1) and (3) of are orthonormal bases of R? and the

set in (2) is an orthogonal basis of R?.

Theorem 7.7.2

Let § = {xy, X,,..., X,} be a basis for R".

(1) If S is orthonormal, then each vector x in R" can be expressed as

X =Xyt X+ - +,X

n<n’
where ¢, =x- x; (i=1,2, -, n).

X X;

7

(2) If § is orthogonal, then ¢, = W
X;

We prove (1) only. Since S is a basis for R", each vector x€R" can be

expressed as a linear combination of vectors in S as follows:
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X=X tex,t - +e,X,, (c; ER).

For each i (i=1,2, ..,n), we have
X X, =(e;x; +exy + o+ +¢,X,) X
=¢ X x)+e(xy x)+ o+, (x, X))
Since § is orthonormal, x;- x; = {(1)’ 7. Hence
c=x x; (i=1,2, .,n) |

Write vy = (2, —3,5) as a linear combination of the vectors in

{y1 =(0,1,0), y, = (

20— w= (gm0 -]

that is the orthonormal basis for R® in (3)

Let vy = ¢;y; + &y, + ¢3y5. Then, by Theorem 7.7.2, ¢;=y- y;, (i=1,2,3).

Hence
9 8
a=y 1= 3 =Yy Y2:—/gv03:}" Y3:_—/g-
. . 9 8
Y=oyt Y, tyy = —3y; + \/gY2_ \/?Yy [ |

Theorem 7.7.3

(1) Suppose S’ ={x;, Xy, ..., X,,} is an orthonormal basis for R". Then,

since [|x;l/=1, the orthogonal projection yER" onto the subspace

W, =<X;, Xy, ..., X, > in R" is

yi = projy y=0 X)X+ X)% + (v x)x,

(2) If S"={xy,x,, ..., x,} is an orthogonal basis, but not an orthonormal

basis for R", then y, = proj w, ¥ can be written as
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y Xy Yy X Yy X
X+ Xy e
Il |l lIxc, |l [l

Y1 = DProjy, y=

Let W be a subspace of R® spanned by the two vectors

15—3, 0, —%) in an orthonormal set §= {x,.x,}. Find

the orthogonal projection of y= (2,1,1) onto W and the orthogonal

X = (0’ 1, 0), Xy =

component of y perpendicular to W.

Y. =proj py = (v %)% + (v %)%,

2 5 12 _ 10 24
L (o, 1’0”( E) 130 E)_( Teo" —169)'

The orthogonal component of y perpendicular to W is

VO (10 24 \_ (348 145
Y2 =Yy proj Wy (27 1a 1) ( 169 ) 17 ].69 ) 169 9 07 169 ) .
Gram-Schmidt orthonormal process
Theorem 7.7.4
Let §={xy,X,, ..,x,} be a basis for R". Then we can obtain an
orthonormal basis from 9.
[Gram-Schmidt Orthonormalization]
We first derive an orthogonal basis 7= {yl, Vos s yn} for R" from the basis S as

follows:

> W

y,= Projw y
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[Step 1] Take y;, =x,.

[Step 2] Let W, be a subspace spanned by y, and let

_ . _ X2 N
Yy =Xy —DPIroj WEXQ_ Xy — Wyl .
1

[Step 3] Let W, be a subspace spanned by y; and y, and let

X3 V1 X3" Vo
Yy~ ys.
AlS lly,lI?

Y3 = X3 T DPIOjJ X = X3 —

[Step 4] Repeat the same procedure to get

Xt V1 X Yo Xp Yi-1
9 vy — 2 YQ*"'*72Y;¢71 (k:47 57 eee? ’I’L),
Iy, I A Iy, 4l

where W, =<x,Xy, ..., X, >.

It is clear that 7= {yl, Yor s yn} is orthogonal. By taking

Y
Z, = (k:1727 YS) n),
Al
we get an orthonormal basis {z,, z,, ...,z,} for R". |

The above process of producing and orthonormal basis from a given basis is
called the Gram-Schmidt Orthogonalization process.

[Remark] Simulation for Gram-Schmidt Orthonormalization

e http://www.geogebratube.org/student/mb58812

mE H7 MEAd Ea9 HE 2 MOy Es@
[RI[ALLA L O[] [N froe] Loz [ ALAR B OO N e Ll ]
x;=(-829 469 ) > x=(-829 469 )
) ,
x,= (213 13.55) : x,=( 213 | 11355
, ,

o, 5,

o= o
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=0

Use the Gram-Schmidt Orthonormalization to find an orthonormal basis

Z=1{z,,2,} for R? from the two linearly independent vectors x; = (1, 1),
x, = (1, 2).

We first find orthogonal vectors y,, y, as follows:

[Step 1] y, =x, = (1, 1)

S ! 3 (11
[Step 2] v, =%, = proj yx, =%, = 70 ||2 onm=L2)- S == 5. g
1
Z, = N :( ! 1 ) Z, = Y :(_ 1 1 ) [ |
Podlvl Vw2 V2 T il V2 V2

Let x;,=1(1,1,0),x,=(0,1,2),x3=(1,2,1). Use the Gram-Schmidt
Orthonormalization to find an orthonormal basis Z= {z,, z,, z;} for R*

using the basis S = {x;, x,, x5} for R’

We first find orthogonal vectors y;, vy, ¥;:
[Step 1] Take y, =x, =(1,1,0).
[Step 2]

X 1

o oroi e = 1 (-1 1
Yo = Xy T PrOj Xy = X, - o 1|\2 =2 Ly =00,1,2) 2(1,1,0)—( 2,2,2)

X3m Vi X3' Vo
[Step 3] v = X3 —proj ;X3 = X3 — 7 Y17 2 V2
lly, [l ll
_ _3 _ofLr 1y o202 1
_(13271) 2(15150) 9( 27272) ( 9793 9)

By normalizing y,, ¥, ¥;, we get

, = v :( 1 1 0)

L lyyll V2 V2o

4 = Yo :(_ \/5 \/5 2\/5)
2 |l 6 6 3

. :iz(fz 2 fi)
AT 3°37 3/
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Therefore, Z= {(

Jrr o s ) o

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

O Computation for an orthogonal basis

x1=vector([1,1,0])
x2=vector([0,1,2])
x3=vector([1,2,1])
A=matrix([x1,x2,x3]) # generate a matrix with x1, x2, x3

[G,mu]=A.gram_schmidt() # find an orthogonal basis. A==muxG

print G
[ 1 1 0]
[-1/2 1/2 2]

[-2/9 2/9 -1/9]

@ Normalization

B=matrix([G.row(i) / G.row(i).norm() for i in range(0, 3)]): B
# The rows of matrix B are orthonormal

[ 1/2#sqrt(2) 1/2+*sqrt(2) 0]
[-1/3*sqrt(1/2) 1/3=*sqrt(1/2) 4/3*sqrt(1/2)]
[ -2/3 2/3 -1/3]

Therefore, we get an orthonormal basis

S T A Y R

We can verify if Z is orthonormal as follows:

)

® Checking for orthonormality

print B*B.transpose() # Checking if B is an orthogonal matrix.
print

print B.transpose()*B

[1 0 0] [1 0 0]
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[0 1 0] [0 10]
[0 0 1] [0 0 1]

Let x; = (1,1, 2), x,

i=x=(1,1,2)

. X9t V1
Vo = Xy = Proj Xy = Xp = — 5y = (0,2, —4)+ =(1, 1, 2)=(1, 3, —2)

=(0,2, —4). Use the Gram-Schmidt

Orthonormalization to find an orthonormal basis Z= {zl, z2} for a

subspace of R? for which §= {x;, x,} is a basis.

6
[y, II”

1 2
) 3 s T .

) Vi (1 1
'Zl

Tl Ve Ve

"Good, he did not have

mathematician".

David Hilbert (1862-1943)

http://en.wikipedia.org/wiki/David_Hilbert
Hilbert is known as one of the founders of proof
theory and mathematical logic,

2 Yo
’\/E)’ Z2||y2||(m iz 14

enough imagination to become a
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. QR-Decomposition; Householder Transformations

|
| e Lecture Movie : http://www.youtube.com/watch?v=crMXPi2lgGs
e Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—10—sec—7—8.html

If an m Xk matrix A has k linearly independent columns, then the
Gram-Schmidt Orthogonalization can be used to decompose the matrix
A in the form of A= QR where the columns of  are the
orthonormal vectors obtained by applying the Gram-Schmidt

Orthognalization to the columns of 4 and R is an upper triangular
matrix. The @R-decomposition is widely used to compute numerical
solutions to linear systems, least-squares problems, and eigenvalue and

eigenvector problems. In this section, we briefly introduce the QR

-decomposition.

M Details can be found in the following websites:

e http://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/GramSchmidt
.pdf

e https://inst.eecs.berkeley.edu/~eel27a/book/login/l_mats_qr.html

e http://www.ugcs.caltech.edu/~chandran/cs20/qr.html

QR Factorization

=) QxR

. Upper
Orthogonal Pl
= triangular

Reduce Rank by
making more rows in
R zero
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~, Coordinate vectors

e Lecture Movie : http://youtu.be/M4pelLF7Xur0, http://youtu.be/tdd7gbtCCRg
o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—10—sec—7—9.html

In a finite-dimensional vector space, a basis is closely related to a

coordinate system. We have so far used the coordinate system

associated to the standard basis of R”. In this section, we

introduce coordinate systems based on non-standard bases. We

also study the relationship between coordinate systems associated

to different bases.

D If o ={x,%, .., x,} is an ordered basis for R", then any vector x in R" is
uniquely expressed as a linear combination of the vectors in a as follows:

X=X + Xy + o +e,x,, (ccq .., ER) (1)

Then ¢, ¢y, ..., ¢, are called coordinates of the vector x relative to the

n

basis «.

Definition ~ [Coordinate vectors]

The scalars ¢, ¢y, ... ,c, in (1) are called the coordinates of x relative

n

to the ordered basis «. Furthermore, the column vector in R"
€1
Co

is called the coordinate vector of x relative to the ordered basis «
and denoted by [x]

[

=)

The vector x=(2, —3,5) in R?® can be expressed as follows relative to

the standard basis a = {e; e,, e;} for R?*:

x=(2, —3,5)=2e; + (—3)e, +5e; .
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Therefore

) Let x,=(1,1,0), x,=(1,1,1), x;=(0,1,—1). For x=(1,2,3) find the

coordinate vector [x], relative to the basis a = {x;, X,, X3} for R’.

From x=(1,2,3)= ¢;x; + &%, + ¢3%3, (¢, ER)

=c¢(1,1,0)+ ¢y (1,1, 1)+¢; (0,1, = 1),

C] + C2 = 1
we get the linear system ¢, +¢, +c¢; = 2
Ca—C3=3
By solving this linear system, we get ¢, =—3, ¢, =4, ¢; =1.
-3
x],=14|. [ |
1

As described above, finding the coordinate vector relative to a basis is

equivalent to solving a linear system.

Theorem 7.9.1

Let o be a basis for R". For vectors x, v in R" and a scalar c€ R,
the following holds:

In general we have

[Clyl + Co¥y + ot Cnyn]a: €1 [yl ]u' + Co [YQ](V + ot Cn [yn]a'
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Change of Basis

D Let o ={x.x, ...x,} and 5={y,.¥s ...y, } be two different ordered bases for

R™. In the following, we consider a relationship between [x ], and [x |;.

Letting x = c;y; + &y, + = +¢,y,, (¢; ER ), the coordinate vector of x&R"
relative to § is

and the coordinate vector [x ] of x&R" relative to a can be expressed as

«

[X]a = [clyl + Y2 + o+ Cn,yn}a': €1 [yl]a + Coy [YZ](Y + o+ Cp [yn]a

Py
Let [yj l, = ?23 be the coordiate vector of y; relative to a and matrix P be
Prj
P11 P12 - Pin
pP= [[yl]a: [yol, o o [yn}&]: 1:721 1?22 1?271 .
Pni1 Pn2 =" Pan
Then we have
P11 (P12 ] DPin
x ], =¢ 2:)21 + ¢ ?22 + o+ e, ]?2"
Pn1 [Pn2 | Pnn
P11 P2 Din || e ]
_ 1:7211:722 Z??n .Cz =Plx }ﬁ
Pn1Pp2 - Punl | Cn |
that is, [x], = P[x];. (2)

In the equation (2) matrix P transforms the coordinate vector [x ]ﬂ to another

coordinate vector [x ],. Hence the matrix P= [lv].[v.lo - [v,].] is called a
transition matrix from ordered basis ( to ordered basis a and denoted by
P=[I]j . Therefore, [x], =P [x];, = [/[x];.
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This transformation is called change of basis. Note that the change of basis
does not modify the nature of a vector, but it changes coordinate vectors. The
following example illustrates this.

165 )

(2,1) Fixed point

| > > /7 1

Basis: 1(1.0), (0, 1)} Basis: 'i':'!.UP.lll. 1) :

' Let o = {e;. e,} be the standard basis for R? and y, = B], Yo = [7 1].

For the two different ordered bases «a, 8= {y;, v, }:

(1) Find the transition matrix P=[7]§ from basis 3 to basis a.

(2) Suppose [x ]; = [g] Find the coordinate vector [x ],.

(3) For x = 3 , show that equation (2) holds.
9

(1) Since P=[1]5=1[I[y,], [v,], |. we need to compute the coordinate vectors
for y,, y, relative to «. Since

{yl =e, + 2e,
Yy, =—e; t+ e

(3) Since x = [g]:3e1+ 9e, and also x = [g]:4yl+ ly,,

b [ e[

It can be easily checked that [x |, = [g]z Bi H [ﬂ =Plx ], [ |
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For x, =(1,2,0), x,=1(1,1,1), x,=(2,0,1) and

vi=0 —1,3). v,=0,5,2), y3=(6,3, 3),

let a = {x;, X, X3} and B = {y,, ¥y v3}. both of which are bases for R
Find P=[7]5.

Since P = [[yl]a v, 1, [Y3]Q], we first find the coordinate vectors for

Vi, ¥y V3 relative to a. Letting
@mX, + ayxy + a3x; =y, (@, ER)
bix, + boXy + b3xy; = vy, (b, ER)

Xy T Xyt c3X3 = Vs, (¢, €R),

we get the following three linear systems:

a; +ay,+2a;3 =4 by + by +2by =5 c;tey+t2c3=6
2a, + a, =1 2b, + b, =5 2¢, + ¢, =3
ay+ a3 =3 by + b3 =2 ct+ c3=3
112
Note that all of the above linear systems have A=|2 1 0| as their
011

coefficient matrix. Hence we can solve the linear systems simultaneously
using the RREF of the coefficient matrix. That is, by converting the

augmented matrix [4: y;i y,i y3] in its RREF, we can find the values

of a;, b;, ¢;(i=1,2,3) at the same time:

112 4: 5 : 6
A=121 0 —1: 5: 3
011 3: 2 : 3
has the RREF
100: —1: 2: 1
B=1{01 0: 1: 1: 1
00 1: 2: 1: 2
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e http://matrix.skku.ac.kr/RPG_English/7-MA-transition-matrix.html

(Ofp=0]
wp 1
[= 5

http://sage.skku.edu

xl=vector([1,2,0]);x2=vector([1,1,1]);x3=vector([2,0,1])

A=column_matrix([x1, x2, x3])

yl=vector([4, -1, 3])iy2=vector([5, b, 2]);y3=vector([6, 3, 3])

B=column_matrix([yl, y2, y3]) # Creating the matrix with columns y1, y2,
# y3

aug=A.augment(B, subdivide=True)

aug.rref()

[1 0 0-1 2 1]
[0 1 O 1 1 1]
[0 0 112 1 2] |

Theorem 7.9.2

Suppose a and B are two different ordered bases for R"™ and P be

the transition matrix from [ to a. Then P is invertible and its inverse

P~ lis the transisiton matrix from « to 8, that is, P~ '=1[7)°

.

For the two bases «, § for R? in , compute the following:

(1) The transition matrix Q=[/]? from basis « to basis j.

1
(2) The coordinate vector [x |; relative to basis 3 for given [x |, = [5 }

(1) Since the transition matrix from § to o is P=

, by Theorem

121
111
212

7.9.2, we have
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http://sage.skku.edu

x1=vector([1,2,0]);x2=vector([1,1,1]);x3=vector([2,0,1])
x0=vector([1,5,2])

A=column_matrix([x1, x2, x3])

yl=vector([4, -1, 3])iy2=vector([5, b, 2]);y3=vector([6, 3, 3])
B=column_matrix([yl, y2, y3])

aug=B.augment(A, subdivide=True)

Q=aug.rref()

print Q

[ 1 0 0]-1/2 3/2 -1/2]
[ O 1 o o 2 -1]
[ 0 0 1] 1/2 -5/2 3/2]

\EJ'

|

BE/

s
e
Gl
e

[Bookmarks] http://blog.daum.net/with-learn/5432044
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e http://matrix.skku.ac.kr/LA-Lab/index.htm
e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

Use determinant to check if the following vectors are linearly independent:
vi=(1,1, =3), v,=(0,2,1), v3=(0, —1,0)

Determine if the given set § is a basis for R?®.
(1) 51 = {(27071)7 (67375)7 (07_570)}

2) 5, =10, 2,3), (2,4,1), (1, 3,2)}
(Hint: http://math3.skku.ac.kr/spla/CLA-7.1-Exercise-2)

Find two different bases for the subspace of R? described by the equation
z+2y+32=0.

Given a homogeneous linear system, find a basis and the dimension of its

corresponding solution space.

(1) 4z —2my+253+22,=0
Tty tey—2,=0

(Hint: http://mathl.skku.ac.kr/home/matrix1/261/)

(2) =z +3zy— 215 +22;,=0
2z + 62y — 53 — 2z, +4x5 — 325 =0
S5x53+ 10z, + 1525 =0
2z, +6xy+ 82, + 425+ 18z, =0

(Hint: http://mathl.skku.ac.kr/home/pub/548/)

Given matrix A4, find a basis for its null space and nullity(A4).
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2 2 -1 0 1
-1-1 2-3 1

B 1 1-2 0-1
4= 0 0 1 1 1
0 0 0 1 1

0 0 1 1 0

Sage: Find RREF of [4} 0]

A=matrix(272.,6,5,(2,2,-1,0,1,-1,-1,2,-3,1,1,1,-2,0,-1,0,0,1,1,1,0,0,0,1,1,0,0,1,1,0])
A.echelon_form()
A right_kernel()

(11000:

0 b _ B _
00100:0 T2 1 1
00010:0 L 1 1
00001:O o x=|z3|=1| o |=s| 0 |,(sER) forms a set of solutions. §=<| 0
00000:0 4 0 8 8
100000:0 Ly 0

and nullity(A4) = 1.

For the following matrix A, find a basis for its column space Col(4) and

compute the column rank ¢(4).

SO WO N
OO WUl N
SO O WO
|
RO~ N
O NN~ 0o Ot

For given matrix A compute its rank and nullity. Verify if the rank and
nullity of A satisfy the Rank-Nullity Theorem.

25791011
(1) A=|23124 8}
86212 3
1 -1 2 -1
-1 0—-1 2
(2) A= 2 -4 6 0].
3 3 0 -1
0—-1 1 1

@ RREF(4)

A=matrix(QQ, 3, 6, [2, 5, 7, 9, 10, 11, 2, 3, 1, 2, 4, 8, 8, 6, 2, 1, 2, 3]
print A.echelon_form()
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[ 1 0 0 -3/4 -3/2 -13/4]
[ 0 1 0 7/8 9/4 21/4]
[ 0 0 1 7/8 1/4 -5/4]

=> rank(4)=3 and nulllity (A4)= 6-3 =3.

@ Sage:

A=matrix(QQ, 3, 6, [2, 5, 7, 9, 10, 11, 2, 3, 1, 2, 4, 8, 8, 6, 2, 1, 2, 3]
print A.rank()

print A.right_nullity()

. rank(A4)=3 and nullity(4)=3. |

[ ) Check if rank(4) =rank(4 7).

1-21 1 2

_ 0 11 3 4
A= 1 2513 5|°

-1 30 2—-2

Using the table below compute Row(A), Null(4), Col(4), Null(4”) for

matrix A4:

(a) (b) (c) (d) (e)
sizeof A | 3X3 | 3X3|3X3|5%X9]|9x%x5
rank(4) 3 2 1 3 2

(Y For A= M if rank(4)=m, we say that 4 has full row ran, and if

mXn>

rank(4)=n, A is said to have full column rank. Determine if 4 has

full row rank and/or full column rank:

(Hint: http://math1.skku.ac.kr/home/pub/565/)

For a=(1,2, —1,1), find a basis and the dimension of the hyperplane

at ={xla- x=0}.
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For any x=(z, vy, 2z, w) in a*, (1,2,-1,1)- (z,y,2z,w)=0.
=> z+2y—z+w=0 => dim a* =4—1=3 (since acR").
A set {(1, 0, 0, -1), (0, 1, 0 ,-2), (0, 0, 1, 1)} forms a basis for hyperplane a* . [ |

(LM For x=(1,2,1) and a=(2,1, —1), find the standard matrix for

T(x) = proj - ,-X.

(LN For x=(1,2,1) and a= (2,1, —1), using proj.,.x, find x, and x, such

that x,€ <a>, x,€ <a>" and x=x; +X,.

B T(x) = proj . ,.x= Px and its standard matrix is

2 4 2 -2
P—%ﬁfyéll Dl_ﬂ%lQ 1—4.
a“a -1 —2—11
1
114 2 =2|1 [6 1
Since x,€ < a> andxlzT(x),xlzPXZE 2 1 —1 2=€ 3 (=1 2
-2—-111]11 -3/ | 1
2
1 0
1 1 3
Xo= X— X1 = 2}— 2 |=12]. |
L N 2
2 2

For given x=(1,0,2), express x as X=X, +X, for which x, is in the
direction of a= (2, 3, 1)a and x, is perpendicular to a.

For the following A and b, find the least squares solution to Ax= b:

1 3 5 2 —2 1
-21-21 0 0
(1) A=|-1-30 1 0|, b=] 1].
-30 1 0 0 0
01 2 -21 0
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Find the least squares curve y= a,+ a,z + a,z” + azz® + a,z* passing through
the five points (1, 5), (2, 1), (3, —3), (4, 1), (5, 2).

Determine the values of a, b, c which make the set
{(1,1,1), (3,2, —5), (a, b, ¢)} orthogonal.

Find the orthonormal set relative to the following orthogonal vectors:
v, =(12,1),v,=(1,0,1),v;=1(3,1,0).

Sage:

x1=vector ([1,2,1])

x2=vector ([1,0,1])

x3=vector ([3,1,0])

A=matrix([x1,x2,x3])

[G,mu]=A.gram_schmidt()

B=matrix([G.row(i) / G.row(i).norm() for i in range(0, 3)]): B

[1/6xsqrt(6) 1/3*sqrt(6) 1/6%sart(6)]

[ sart(1/3) -sart(1/3) sart(1/3)]
[ sart(1/2) 0 -sart(1/2)] . [ ]

Show that each of the following sets of vectors R* is linearly independent,

and find its corresponding orthonormal set:
(1) vy =(0,0,1,0), v, =(1, 0, 1, 1), v = (1, 1, 2, 1).

(2) vy = (]-7 ]-a ]-7 1)7 Vo = (_ ]-a 4a 47 _]-)a V3 = (47 _27 2a 0)
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For given plane 7: {(z,y,z)lx —y+22z=0} and vector v= (2,4,—3), find the

following (Note that the inner product is defined to be <{u,v>=u- v.):

(1) A basis for the 2-dimensional vector space represented by the plane and its
corresponding orthonormal basis

(2) proj,v
For the ordered basis 8= {(0,1,1,1), (1,0,—1,1), (1,2,0,2), (3,—2,2,0)} for
R*:
(1) For x= (7,—7,5,4), find its coordinate vector [x], relative to 3.
(2) For y=(1,—4,4,3), find its coordinate vector ly], relative to .
(3) Find the coordinate vector [2x+y],; of 2x+y relative to 3.

(4) For the above x and y, find [3x]; and [—5y];.

7] (1]

2 2

2| |2

| 4| @ |4
47 o1 |’

8 8

15 3

L 8 | | 8 |

Sage :

xl=vector([0,1,1,1]) : x2=vector([1,0,-1,1]); x3=vector([1,2,0,2]); x4=vector([3,-2,2,0])
P=column_matrix([x1,x2,x3,x4])

Al=matrix(4,1,[7, -7, 5, 4]); A2=matrix(4,1,[1, -4, 4, 3])
P1=P.inverse()
print P1*Al: print: print P1+xA2

For 1w, =(1,2),u,=(23),v,=(1,3),v,= (1, 4),

let  a={u;,u,},
B={v,, v,} which are bases for R”.

(1) Find the transition matrix [/]5.

(2) Find the transition matrix [7]”

o
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(3) Suppose [w], = (1, 1). Find [w], using the transition matrix Wil

a-

(4) Suppose [w]; = (3, 2). Find [w], using the transition matrix [/]}.

e}

If the size of matrix 4 is m Xn, what is the value of
rank(4 7 )+ nullity(4 7)?

(Select one) If one replaces a matrix with its transpose, then

. The image may change, but the kernel, rank, and nullity do not change.

. The image, kernel, rank, and nullity may all change.

. The image, rank, and kernel may change, but the nullity does not change.
. The image, kernel, rank, and nullity all do not change.

The image, kernel, and nullity may change, but the rank does not change.
The kernel may change, but the image, rank, and nullity do not change.

QTmMmEUQ®E >

. The image and kernel may change, but the rank and nullity do not change.

(Select one) Let 7: R®*- R” be a linear transformation. Then

T is invertible if and only if the rank is five.

T is one-to-one if and only if the rank is three; 7' is never onto.
T is onto if and only if the rank is two; 7' is never one-to-one.
T is one-to-one if and only if the rank is two; 7' is never onto.
T is onto if and only if the rank is three; 7' is never one-to-one.
T is onto if and only if the rank is five; 7T is never one-to-one.

@ mmoawx>

T is one-to-one if and only if the rank is five; 7" is never onto.

(Select one) If a linear transformation 7': R*- R? is onto, then

. The rank is three and the nullity is zero.

. The rank and nullity can be any pair of non-negative numbers that add up to three.
. The rank is three and the nullity is two.

. The rank is two and the nullity is three.

. The situation is impossible.

. The rank and nullity can be any pair of non-negative numbers that add up to five.

QM mg QW >

. The rank is five and the nullity is two.
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(Select one) If a linear transformation 7': R®*- R? is one-to-one, then

. The rank is five and the nullity is two.

. The situation is impossible.

. The rank and nullity can be any pair of non-negative numbers that add up to five.
. The rank is two and the nullity is three.

. The rank is three and the nullity is zero.

. The rank is three and the nullity is two.

Q™M mg QW >

. The rank and nullity can be any pair of non-negative numbers that add up to three.

(1) If the homogeneous linear system Ax=0 has m linear equations and n unknowns,

what is the maximum possible value for the dimension of the solution space?
(2) What is the dimension of a hyperplane in R® perpendicular to a vector a in R®?
(3) List all of the possible dimensions of subspaces of R°?
(4) What is the dimension of the subspace of R* spanned by the three vectors

v, =(1,0,1,0), v, = (1,1,0,0), v; = (1,1,1,0)?

Suppose S={x;, ..., X, } is a basis for R". If 4 is an invertible matrix of

order n, show that the set {Ax,, ..., Ax,} is also a basis for R".

Determine if the following matrix 4 and 4 74 have the same null space and

row space:
1 2
A= 2 4
—-1—-2

What happens if the Gram-Schmidt Orthonormalization Procedure is applied
to linearly dependent vectors?

Suppose the columns of 4 are orthonormal. What is a relationship between

the column spaces of A4 7 and 47
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Show that the set §={(2,1,0),(0,0,2),(4,1,5)} spans R?®.

What are the possible ranks of A according to the varying values of t¢:

t11
t1 ¢
1¢t1

A:

[2014 ICM Seoul, Korea] http://www.icm2014.org/

- 287 -


http://www.icm2014.org

8.1 Matrix Representation of Linear Transformation

8.2 Similarity and Diagonalization

8.3 Diagonalization with orthogonal matrix, *Function of matrix
8.4 Quadratic forms

*8.5 Applications of Quadratic forms

8.6 SVD and generalized eigenvectors

8.7 Complex eigenvalues and eigenvectors

8.8 Hermitian, Unitary, Normal Matrices

*8.9 Linear system of differential equations

Exercises

In Chapter 6, we have studied how to represent a linear transformation from R"

into R™ as a matrix using its corresponding standard matrix. We were able to
compute the standard matrix of the linear transformation based on the fact that

every vector in R"™ or R™ can be expressed as a linear combination of the
standard basis vectors.

In this chapter, we study how to represent a linear transformation from R”" to

R™ with respect to arbitrary ordered bases for R" and R™. In addition, we study
relationship between different matrix representations of a linear transformation

from R" to itself using transition matrices. We also study matrix diagonalization.
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Further we study spectral properties of symmetric matrices and show that every

symmetric matrix is orthogonally diagonalizable.

* A quadratic form is a quadratic equation which we come across in mathematics,
physics, economics, statistics, and image processing, etc. Symmetric matrices play
a significant role in the study of quadratic forms. In particular, we will learn how
orthogonal diagonalization of symmetric matrices is used in the study of quadratic

forms.

We introduce one of the most important concept in matrix theory called the
singular value decomposition (SVD) which find many applications in science and

engineering.

We will generalize matrix diagonalization of m Xn matrices and study least squares

solutions and a pseudoinverse.

We introduce complex matrices having complex eigenvalues and eigenvectors. We
also introduce Hermitian matrices and unitary matrices that are complex
counterparts corresponding to symmetric matrices and orthogonal matrices,

respectively. Lastly, we study diagonalization of complex matrices.

ay Gy T Gy P 4P D 4, 0
iy dn v dy [ > 0 A4,
' Diagonalization ’
G Gy " g 0 0 o= 2
P 17T ] |
Amxn=

Kxn

mxk
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\ Matrix Representation

[ | @ Lecture Movie : http://youtu.be/ifMcPoso6g4
o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—11—sec—8—1.html

[ In Chapter 6, we have studied how to represent a linear

transfromation from R" into R™ as a matrix using the standard

bases for R" and R™. In this section, we find a matrix

representation of a linear transformation from R" into R™ with

respect to arbitrary ordered bases for R" and R™.

Matrix Representation Relative to the Standard Bases

n m

4L 4L

Standard Basis Standard Basis
o
& = {91392:---;&",} o Ez = el,ez,...,em]-

(pn ). Rm™
'

@ = {X;,X5, ..., Xn} B =Y 1¥n}

Transition Matrix

—
Standard Basis

€ = {€1,85,...,8,} €, = {e1.e;,...e,}

ik - R™
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Matrix Representation In Some Ordered Bases for R”
and R"™

General Linear
Transformation

(RF——— )
=u

a— {x1:x21 - x‘-‘l} B = [}'1;3'2. LEL] YH}

Standard Basis Standard Basis
€ = {€;,€;,...,e,} €; = {€1,€;,...,€,,}

Theorem 8.1.1

Let 7: R" - R™ be a linear transformation, and let
a={x; .. X} B={Vy .., ¥}
be ordered bases for R" and R™, respectively. Let y= 7(x). Then
vl =4" [x], = [71] [x],.

where the matrix representation A" = [T]g of 7T in the ordered bases «
and (3 is
A = [[T ) [T )00 [Tx,)]g] .

Note that the matrix [7]° is called the matrix associated with the linear

«

transformation 7" with respect to the bases o« and §.

Recall that any vector x€R"™ can be uniquely represented as a linear
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combination of vectors in a= {xy, ...,X,}. say
X=CX; T Xy +-+ ¢, X,

Then the coordinate vector for x relative to the basis « is

By the linearity of 7, we have y = T(x)=¢, 7T(x,)+ ¢, T(x,)++¢, T(x,).

Since y is a vector in R™, the coordinate vector of y relative to [ satisfies

vls = e[+ ey [T(xy)]g + + e, [T(x,)]g

= [Ty : [T()]p 2 oo [Tx,)]5] |2 =47 [x], u

Thus the matrix [T]z is the matrix whose :th column is the coordinate vector

[7(x,)]; of T(x;) with respect to the basis S.

[Remarks]

(1) By Theorem 8.1.1 we can compute [T(x)];, by a matrix-vector

multiplication, that is,

(2) The matrix [7']? = A’ varies according the ordered bases «, . For example,
if we change the order of the vectors in the ordered base «, then the columns

of A’ change as well.

(3) The matrices 4 =[7]=[7]? and A’ =717 are distinct, but they have the

€1 «

following relationship:

AT =11 = (02 (7121 = [T12 =4

« €

(4) If R"=R™ and a=p, then A" = [7]° is denoted by 4=[7], and is called

the matrix representation of 7' relative to the ordered basis «.
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X
Define a linear transformation 7: R*- R? via T[ Y J: [2;_ ZZ] and let
z
1 0 1 . .
a=31x;, = (0|, xo = |1|, x3=|1], ﬂZ{ylz[l},yZZ[ 1 ]}
1 1 0
be ordered bases for R* and R?, respectively. Compute 4" = [7]7.
Since A" =[71° = [[T(x)l; [T(x)]; [T(x3)5]],.5. we first compute

T(Xl), T(Xg)a T(Xg):

- _2] e [, e ]

We now find the coordinate vectors of the above vectors relative to the

ordered basis (3. Since

Tix)= |

1 1
-1 1]“2[ 1]’
1

1 -1
T<X2):_ 0]:b1Y1+b2Y2:b1[1]+b2[ 1]7

=ay; tay, = aq

(2 1 —1
T(X3): 71] =y Ty, =¢ [1] +c2[ 1] ,

we need to solve the corresponding linear systems with the same

its

coefficient matrix H_ﬂ The augmented matrix for all of the three
. . 1—1 : 1: —1: 2 . .
linear systems is . . . . By converting this into
1 1 : —1: 0: 1
RREF, we get
. . 1. 3
10: 0: 5 2
. . 1. 1|
01: 1: 5 5
1 1
Therefore, (a;, ay)= (0, —1), (b, by)=(— > 5) (e, )= (5, — )
hence
0 —
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(Note that A = [7] =[7]7= [(2) (1) :HJ

- D

" z+y
Let 7:R?- R? be defined via 7{[ ])z r—3y | and
—2x+y
) 5 1 -1 0
a:{xlz[l]”‘?:[l”’ﬁ:{“: Op =1 2y =l
-1 1 1

be ordered bases for R? and R?, respectively. Find A" =

Since 7(x,)=

(71!

o

3
— 1|, we have
3

2
- 2} , T(X2):
-1

1—1 0: 2 3
0 21: —2: —1}.
1 1 1:

~1i -3

1—-10 2 3 1-10 2: 3
0 21: —2: —=1|— [0 20: —2: —1
-1 11: —1: —3 0 01 1: 0
1. 5

100 5 5

3. 1].

010 5 - 5

00 1: 1: 0

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

@ Write |y, v, vy T(x,): T(x,)].
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X, y = var('x, v')

h(x, y) = [x+y, x-3xy, -2*x+y]

T = linear_transformation(QQ*2, QQ*3, h)

xl=vector([1, 1])

x2=vector([2, 1])

yl=vector([1, 0, -1])

y2=vector([-1, 2, 1])

y3=vector([0, 1, 1])

B=column_matrix([yl, y2, y3, T(x1l), T(x2)]) # Matrix whose columns are
# the vectors defined above

print B

[1-1 0 2 3]
[0 2 1-2-1]
(-1 1 1-1-3]

® RREF [yl Yy V3 T(Xl)E T(Xoﬂ

C=B.echelon_form()
print C

[ 1 0 0 1/2 5/2]
[ O 1 0 -3/2 -1/2]
[ O 0 1 1 0]

® Finding [ 7]’

«

A=C.submatrix(0, 3, 3, 2) # C.submatrix(a, b, ¢, d)
# submatrix with ¢ consecutive rows of C starting from row a+1 and d
# consecutive columns of C starting from column b+1

print A

[ 1/2 5/2]
[-3/2 -1/2]
[ 1 0]

We shall include calculation using the inbuilt function. Following are the
codes.

var('x,y')
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h(x,y)=[x+y,x-3*y,-2*x+y]

V=QQ"2:W=QQ"3

T=linear_transformation(V,W,h)
yl=vector(QQ,[1,1]);y2=vector(QQ,[2,1])

x1=vector(QQ, [1,0,-1]);x2=vector(QQ, [-1,2,1]);x3=vector(QQ,[0,1,1]);
alpha=[y1l,y2]: beta=[x1,x2,x3]

V1=V.subspace_with_basis(alpha); W1=W.subspace_with_basis(beta)
T1=(T.restrict_domain(V1)).restrict_codomain(W1)
T1.matrix(side="right")

[ 1/2 5/2]
[-3/2 -1/2]
[ 1 0]

2008.05.19
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2¢+y
Ty

Let 7 :R? - R? be a linear transformation defined as T([x]):
r+4y

and consider the ordered bases a={e,, e}, 3={e;, e, e} for R* and

R 3, respectively. Answer the following questions:

(1) Find 4’ =[7]".

(2) Compute [T([_ g])]@ using A’ =[7]7 in (1).

(3) Using the definition of 7°, find the standard matrix A = [7] =[7]°

and jﬂ_ﬁﬂ)' where ¢, and ¢, are the standard bases of R? and R

repectively.

1 2
(1) Since T(e,)= l—l , Tle,)=11]|, we get
4 1
1 4 2 1
-1 =|—-1], 1| =1|1]|. Hence
1 1 1], L2

8

. -4 6
(2) Since { GL = [_ 4] , we have

B e A | I B

1 2

&

(Note that T([_‘é]): [T([_‘é])L = {—_ﬂ =(—2)e, +(—10)e, + 20e;.)

=20e;+(—10)e, +(—2) e,

2 1
8) 717 = l1—1 :
1 4

-,

=
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For given three vector spaces with different ordered bases, we
can consider two linear transformations 7 and S, and their
corresponding matrix representations A and B relative to the
given ordered bases.

[Remark]

Composition of Linear Transformations

Ea _ En

a g 4 7
a={x, Xz, X,,} B=1y, ¥o. -, ¥, r=lz, 2,2,
R ' R R"
T:R"— K" S:R' - K
A=(T]} B=(S]}

Let 7 be a linear transformation from a vector space R" with an ordered
basis a into a vector space R" with an ordered basis 8, and S be a linear
transformation from a vector sapce R" with an ordered basis 3 into a vector
space R" with an ordered basis . Suppose these linear transformations have
their corresponding matrix representations 4 =[7]" and B= [S]}. respectively.

We can consider the composition Se 7. Then its matrix representation is

That is, the product of the two matrix representations of 7" and 5.

[Remark] Transition Matrix

As we have discussed earlier, [x], = [7]}[x]; = P[x];. the matrix P=[7]] is called

«
the transition matrix from ordered basis (3 to ordered basis «a. We can

consider the transition matrix as linear transformation TP(x) =PX.

a h B
a=fx;, X‘g,"‘,x;pl IIE:{Yit Y'_'."'.Y.:.-l

[x], = Plxl;
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) Let 7. S : R? - R? be linear transformations defined as

x|\ _ 2x+y] ([a:]): [—x+5y}
T([Qy]) [m—y and § Y 2z + 3y
respectively, Consider the ordered bases o= {e; e}, B={e, e},

v=1{(1,0),(1,1)} for R? Find the matrix representation of the
composition Se 7 with respect to the ordered bases a and ~.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

x, v = var('x, y')

ht(x, y) = [2*x+y, x-y]ihs(x, y) = [-x+5*y, 2*x+3*y]
T = linear_transformation(QQ*2, QQ*2, ht)

S = linear_transformation(QQ”2, QQ*2, hs)
x1=vector([1, 0]);x2=vector([0, 1]);x3=vector([1, 1])
B=column_matrix([x2, x1, T(x1), T(x2)])
C=B.echelon_form()

MT=C.submatrix(0, 2, 2, 2)

print "Matrix of T="

print MT

D=column_matrix([x1, x3, S(x2), S(x1)])
E=D.echelon_form()

MS=E.submatrix(0, 2, 2, 2)

print "Matrix of S="

print MS

print "MS*MT="

print MS*MT

Matrix of T=
[1-1]

[ 2 1]
Matrix of S=
[ 2 -3]

[ 3 2]
MS*MT=

[-4 -5]

[ 7 -1]

F=column_matrix([x1, x3, S(T(x1)), S(T(x2))])
G=F.echelon_form()
MST=G.submatrix(0, 2, 2, 2)
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print "Matrix of S=*T=
print MST

Matrix of S*T=
[-4 -5]
[ 7 -1]

=Y

3D Printing object 1
http://matrix.skku.ac.kr/2014-Album/2014-12-ICT-DIY/index.html
http://youtu.be/FgAzOkqq7Sg
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8 2\ Similarity and Diagonalization
[ |

@ Lecture Movie : http://youtu.be/xirjNZ40kRk, http://youtu.be/MnfLcBZsV—I
o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—11—sec—8—2.html

In this section, we present various matrix representations of a

linear transformation 7' from R" to itself in terms of transition
matrix.

We also study when the transition matrix becomes a
diagonal matrix.

[Remark] Relationship between matrix representations [7] =[7]” and [7]°

€ «

Theorem 8.2.1

Let 7: R"> R" be a linear transformation and « and 3 be ordered

bases for R". If A=[T],, A"=[T];. then we have

A =P AP,

where P =[I]j is the transition matrix from g to a.

7], =4

—

x|a

A= [T, =017 05=P"AP.

http://www.math.tamu.edu/~yvorobet/MATH304-503/Lect2-12web.pdf
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" Let 7 : R?> R? be a linear transfromation defined by T({z]): [Q“T_y].
Y z+ 3y

If o is the standard basis ¢ for R? and 6={y1 = {(1)], y, = [_ ﬂ}is a

«

basis for R?, find A’ = [7]; using the transition matrix P = [/]].

Let A be the standard matrix relative to the standard basis a=¢ for
2—1

1 3].11‘ [7]5 =P, then

linear transformation 7. Then we can find 4 = [

P=lly,l, : ly.l.]= [(1)71}

11
—10

A W | | O R

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

Therefore, P~ 1= [ ] and by Theorem 8.2.1 we get A’as follows:

X, y = var('x, y'")

h(x, y) = [2*x-y, x+3xy]

T = linear_transformation(QQ*2, QQ*2, h)
xl=vector([1, 0]);x2=vector([0, 1])
yl=vector([0, 1]);y2=vector([-1, 1])
B=column_matrix([x1, x2, y1, y2])
C=B.echelon_form()

P=C.submatrix(0, 2, 2, 2)

print "Transition Matrix="

print P

A = T.matrix(side="right")

print "A="

print A

print "P.inverse()*Ax*P"

print P.inverse()xAx*P
D=column_matrix([yl, y2, T(yl), T(y2)])
E=D.echelon_form()

print "Matrix of A wrt beta="

print E.submatrix(0, 2, 2, 2)
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Transition Matrix=

[0 -1]

[1 1]

A=

[ 2 -1]

[1 3]

P.inverse()*AxP

[ 2 -1]

[1 3]

Matrix of A wrt beta=

[ 2 -1]

[1 3] |
Similarity

Definition  [Similarity]

For square matrices A, B of the same order, if there exists an
invertible matrix P such that

B=P 'AP,
then we say that B is similar to A. We use B~ A for similar matrices
A, B.
J 10 0 1 00 100
For A={01 0|, B=|0—1 0|, P=|0 0 1|, it can be shown that
0 0—1 0 01 010

B=P 'AP. Hence B is similar to 4, which is denoted by B~ A. |
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Theorem 8.2.2

For square matrices 4, B, C of the same order, the following hold:
(1) A~ A4

(2) B~ A => A~ B

(3) B~ A, A~ C = B~ C

Therefore, the similarity relation is an equivalence relation.

Theorem 8.2.3

For square matrices A, B of the same order, if A, B are similar to
each other, then we have the following:

(1) det(A)=det(B).

(2) tr(4)=1tr(B).

Since A~ B, there exists an invertible matrix P such that 4 =P 'BP.

(1) By the multiplicative property of determinant,

det(4) = det(P~'BP)

= det(4)=det(P Ydet(B)det(P) (- det(AB)= det(A4)det(B))
= det(4) = det(P ")det(P)det(B)

= det(4)=det(B) (v det(P™'P)=1=det(P ")det(P))

(2) tr(A)=tr (P 'BP)=tr(BPP™ ") (- tr(49)=tr(S4))
tr(BI)=tr(B) [ |

Q Since similar matrices have the same determinant, it follows that they have the
same characteristic equation and hence the same eigenvalues. For a square
matrix, in ordered to solve problems of determinant and/or eigenvalues, we

can use its similar matrices which make the problems simpler.
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Diagondilizable Matrices

Definition ~ [Diagonalizable Matrices]

Suppose a square matrix A is simlar to a diagonal matrix, that is,

there exists an invertible matrix P such that P 'AP is a diagonal
matrix. Then A is called diagonalizable and the invertible matrix P is
called a diagonalizing matrix for 4.

If P7'AP=D, then A= PDP ! and hence we have

Ar=(ppP Y =(pPDP )PDP™ ') - (PDP™") (k multiplications of PDP 1)
=ppP 'P)D(P'P)-- (P 'P)DP!
= ppkp1

This implies that if a matrix is diagonalizable, then its powers can be very easily

computed.

w For invertible matrix P= B ﬂ and matrix 4 = [_; ﬂ we have
e [0 3” 11”11]:{30]
PAP[l—l —24][21 02]°
Hence A is diagonalizable. ]

e http://matrix.skku.ac.kr/RPG_English/8-TF-diagonalizable.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

A=matrix(QQ, [[1, 1], [-2, 4]])
print A.is_diagonalizable() # Checking if diagonalizable

True [ |

Since every diagonal matrix D satisfies 7 ' DI =D, it is
: diagonalizable. u
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' Show that 4= is not diagonalizable.

—

01]
00

Suppose to the contrary that A is diagonalizable, that is, there exist an

invertible matrix P and a diagonal matrix D with

ab

P:[cd’

(ad—be# 0), D= [8 Sﬂ]

such that P~'AP= D. Since AP= PD, we have
[ab][eO]:[Ol
cdllof 00

ae bf]_ [c d

ce df] 100

ab
cd

)

which gives ] . Hence ce=0.

If ¢c# 0, then e=0 and ae=0=c(# 0). Hence c¢=0. Similarly, we can
show that d=0. The conditions ¢=0 and d=0 give a contradiction to

ad—0bc# 0. Therefore, A is not diagonalizable. |

Equivalent Condition for Diagondlizability

Theorem  8.2.4 [Equivalent Condition]

Let A be a square matrix of order n. Then A is diagonalizable if and
only if A has n linearly independent eigenvectors. Furthermore, if A4
is diagonalizable, then A is similar to diagonal matrix D whose main
diagonal entries are equal to the eigenvalues A, ..., A\, of A, and the
ith column of a diagonalizing matrix P is an eigenvector of A4
corresponding to eigenvalue A,.

(=) If A is diagonalizable, then there exists an invertible matrix
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such that P~'AP= B where B=diag(b,, by, -, b,). Since AP=PB, we get

ApM =ppV, 4p® =pp?, ., Ap"™ =pp"). Hence b, by ..,b, are
eigenvalues of A4 and B= D. Note that p<1), pm, ,p(") are eigenvectors
corresponding to b, =A;, by =Xy, ..., b, =\,, respectively. Since P is
invertible, it follows that its columns pm, pm, ,p(”) are linearly
independent.

(=) Suppose A has eigenvalues A, Ay, ..., A\, and their corresponding
eigenvectors p“), p(2)7 7p(") that are linearly independent. Then we can

construct a matrix P as follows:

pP= [p(l) . D(Z) p(n>]
Then
AP=[apM: 4p® . ap™] = [ap® A : ez A
)\1 0--0
—[pM s p® s e p] [0 R 0N pp
00 A,

Since the columns of P are linearly independent, the matrix P is invertible,

giving P~ 'AP= D. Therefore A is diagonalizable. [ |

[Remark] Procedure for diagonalizing a matrix A4

e Step 1: Find n linearly independent eigenvectors p(]), p(2), ,p<”) of A.
e Step 2: Construct a matrix P whose columns are p(l), p(2), ,p(”) in this
order.

* Step 3: The matrix P diagonalizes A4 and P 'AP is a diagonal matrix whose

main diagonal entries are eigenvalues A, ..., A, of 4

D= diag()\l, >\2a veed >‘71)'

5 —6
2 =2

A =2, 0=1 and their corresponding eigenvectors are

It can be shown that the matrix AZ[ ] has eigenvalues
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X, = H], X, = B] respectively. Since these eigenvectors are linearly

independent, by Theorem 8.2.4, A4 is diagonalizable. If P=

x, x,] = H ;] then we have

9 _ 2—3”5 76H2 3]:[2 0}
poAp [—1 2112 —2/[1 2 01 =
00—2
Show that A= |1 2 1| is diagonalizable and find the diagonalizing
10 3

matrix P of A4.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

A=matrix([[0, 0, -2], [, 2, 1], [1, O, 3]

print A.eigenvalues() # Eigenvalue Computation

[1, 2, 2]

A has eigenvalues A\ =1, A\, =2. We now compute linearly independent

eigenvectors of 4.

For A\, =1, we solve Ax= \;x (that is, (\,/— 4)x=0) for x.

E=identity_matrix(3)
print (E-A).echelon_form()

[1 0 2]
[0 1 -1]
[0 0 0]
— 2t -2 —2
Since x= t|=t| 1| (t€R), we get x,=| 1|: For A\, =2, we solve
t 1 1

Ax= \,x (that is, (\,/— A4)x=0) for x.

print (2*E-A).echelon_form()
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[1 0 1]

[0 0 0]
[0 0 0]
— s —1 0
This gives x=| ¢t |=s| 0 |+t|1]| (s,t=R ) and hence
S 1 0
-1 0
Xo=|0 |, x3=11
1 0

xl=vector([-2, 1, 1])
x2=vector([-1, 0, 1])
x3=vector([0, 1, 0]
P=column_matrix([x1, x2, x3])
print P

print

print P.det()

[-2 -1 0]
[1 0 1]
[1 1 0]

1
Since the above computation shows that the determinant of P is not

zero, P is invertible. Hence its columns x;, x,, x3 are linearly

independent. Therefore, by Theorem 8.2.4, A is diagonalizable.

print P*-1+A«P # Computing diagonal matrix whose main diagonal entries

# are eigenvalues of A.

[1 0 0]
[0 2 0]
(00 2] |

Theorem 8.2.5

If x,,x,, .., X, are eigenvectors of 4= [a corresponding to distinct

ij]an
eigenvalues Aj, A,,..., A, then the set {x,x, ..,x;} Iis linearly

independent.

(Exercise) Hint. This can be proved by the mathematical induction k.
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Theorem 8.2.6

If a square matrix 4 of order n has n distinct eigenvalues, then A4 is

diagonalizable.
Let x;, X5, ..., X, be eigenvectors of A corresponding to distinct eigenvalues
A Agy oos A, Then, by Theorem 8.2.5, the eigenvectors are linearly

independent. Therefore, Theorem 8.2.4 implies that A is diagonalizable.
[ |

The matrix A= [g:g] in Example 6 has two distinct eigenvalues. Thus,

by Theorem 8.2.6, A is diagonalizable. [ |

Q Note that a diagonal matrix A can have a repeated eigenvalue. Therefore, the

converse of Theorem 8.2.6 is not necessarily true.

Algebraic Multiplicity and Geometric Multiplicity of an Eigenvalue

Definition [Algebraic and Geometric Multiplicity]

Let A, Ay ..., A, be distinct eigenvalues of A=la;l,.,. Then the

characteristic polynomial of A can be written as

¢ Ay Py
(1i7) (1)

)

|21 —A|=(A—}.Jl

h |

Algebraic Multiplicity

In the above expression the sum of the exponents m,, m,, ..., m; is
equal to n. The positive integer m, is called the algebraic multiplicity

of A and the number of linearly independent eigenvectors

i

corresponding to the eigenvalue ); is called the geometric multiplicity
of ;.
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Theorem 8.2.7 [Equivalent Condition for Diagonalizability]

Let A be a square matrix of order n. Then A is diagonalizable if and
only if the sum of the geometric multiplicities of eigenvalues of A4 is
equal to n.

By Theorem 8.2.4 an equivalent condition for a square matrix A of order
n to diagonalizable is to have n linearly independent eigenvectors. Since
the sum of the geometric multiplicities of eigenvalues of A4 is equal to the
number of linearly independent eigenvectors of 4 and it is equal to n, the

result follows. |

Theorem 8.2.8

Let 4 be a square matrix and A be an eigenvalue of A. Then the
algebraic multiplicity of M\ is greater than or equal to the geometric
multiplicity of .

Let k& be the geometric multiplicity of an eigenvalue A of A, and let P, be
the nxk matrix whose columns are the k linearly independent eigenvectors of A
corresponding to eigenvalue \. We can construct an invertible matrix P by adding
n—k linearly independent columns to P,. Let P=[P, P,] be the resulting invertible
o M, *
Qs O *

that 4 and P 'AP have same characteristic polynomials. Since P~ 'AP has first

matrix and let Q= . Note

be the inverse of P. Then QAPZP”APZ{

k columns have )\ in its diagonal, the characteristic polynomial of P~ 'AP has a

factor of at least (z— \)*. Hence, the algebraic multiplicity of X\ is greater than or
equal to the geometric multiplicity of . [ |

Theorem 8.2.9 [Equivalent Condition for Diagonalizability]

Let A be a square matrix of order n. Then A is diagonalizable if and
only if each eigenvalue A of 4 has the same algebraic and geometric
multiplicity.

HIl If A4 is diagonalizable, then there exists an invertible matrix P and a

diagonal matrix D such that P 'AP= D, or equivalently AP = PD. This implies
that A times column ¢ of P is equal to scalar multiple of the column 7 of P.
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Hence, all the n columns of P are eigenvectors of A, which implies that each
eigenvalue of 4 has the same algebraic and geometric multiplicity. The converse

is also true by Theorem 8.2.5. [ |
200
For A= 1 3 0], its characteristic equation is
-3 5 3

INL, — Al=(A—2)(A—3)* =0. Hence the eigenvalues of 4 are A=2, 3 and

A =3 has algebraic multiplicity 2. The following two vectors are linearly
independent eigenvectors of A4

However, matrix 4 cannot have three linearly independent eigenvectors

and hence Theorem 8.2.4 implies that 4 is not diagonalizable. [ |
4 —21

It can be shown that 4=|2 0 1| has eigenvalues 3 and 2 with
2 —2 3

algebraic multicity 1 and 2 respectively, We can further show that
geometric multiplicity of 3 and 2 are 1 and 2 respectively. Hence A4 is

1 —11
diagonalizable. It can be verified P=|1 0 1| diagonalizes 4 and
0 21
200 )
A= PDP ' where D=0 2 0|. Let us further compute A4°.
003
1 —11][2°> 0 0|j—2 3 —1 454 —422 211
A’=pD’P =11 01|02 O||—-1 1 0|=[422 —390 211| MW
0 21 0 03° 2 —1 1 422 —422 243
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\ Diagonalization with orthogonal matrix, *Function of matrix
I

| @ Lecture Movie : http://youtu.be/jiimlkBGAZfQ, hitp://youtu.be/B——ABWOKAN4
o ab : http://matrix.skku.ac.kr/knou—knowls/cla—week—11—sec—8—3.html

Symmetric matrices appear in many applications. In this section,
we study useful properties of symmetric matrices and show that
every symmetric matrix is orthogonally diagonalizable.
Furthermore, we study matrix  functions using matrix

diagonalization.

Orthogonal Matrix

Definition ~ [Orthogonal Matrix]

For real square matrix A, if A is invertible and A '= A7, then 4 is
called an orthogonal matrix.

Theorem 8.3.1

If 4 is an orthogonal matrix of order n, then the following hold:

(1) The rows of 4 are unit vectors and they are perpendicular to each
other.

(2) The columns of A are unit vectors and they are perpendicular to
each other.

(3) 4 is invertible.

(4) llAxll =llxll for any nx1 vector x (Norm Preserving Property).

Similar to the proof of Theorem 6.2.3.

For A=

2

o

1
3

. Since

Wl |

_2 T_|_2
3 , we have A" = 3

W ol |
W w|—
Wl wo w|-

2
3

1.2
3 3
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22 1412 21
3 3 3 3 3 3
ry_ |21 _2) 21 2| -
AA 3 3 3 3 3 3 I;, A is an orthogonal matrix. W
12 291 22
3 3 3 3 33

The inverse of an orthogonal matrix can be obtained by taking transposition of
the orthogonal matrix.

Definition

[Orthogonal Similarity]

Let 4 and C be square matrices of the same order. If there exists an

orthogonal matrix P such that C=P74P, then (C is said to be
orthogonally similar to A.

Definition

[Orthogonally Diagonalizable]

For a square matrix A4, if

there exists an orthogonal matrix
diagonalizing A4, then A is called orthogonally diagonalizable and P is

called a matrix orthogonally diagonalizing A.

Q What matrices are orthogonally diagonalizable? (Symmetric Matrices)

Theorem  8.3.2
Every eigenvalue of a real symmtric matrix is a real number.

(Exercise) http://www.quandt.com/papers/basicmatrixtheorems.pdf

0 0—2
: The symmetric matrix A= 0—-2 0 has characteristic equation
: -2 0 3

NG —Al=(A+2)A—4)(A+1)=0 and hence its eigenvalues are
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A =—2, A\, =4, A\;=—1 that are all real numbers. |

Theorem 8.3.3

If a square matrix A is symmetric, then eigenvectors of 4 corresponding

to distinct eigenvalues are perperdicular to each other.

(Exercise) http://www.quandt.com/papers/basicmatrixtheorems.pdf

Theorem 8.3.4

Let 4 be a square matrix. Then A4 is orthogonally diagonalizable if and

only if the matrix A is symmetric.

(=) Suppose A is orthogonally diagonalizable. Then there exist an
orthogonal matrix P and a diagonal matrix D such that P AP = D. Since

D=DT we have

PAP=D=D"=(PTAP)"=pPTATP.

Hence

PiAP=PTATP o pPPTAP)PT=P(PTATP)PT
e (PPHAapPPHY=pPPrHAaTPPY
e A=4T

Therefore, 4 is symmetric.

(&) : Exercise |

Theorem 8.3.5

If A is a symmetric matrix of order n, then 4 has n eigenvectors

forming an orthonormal set.

Since A is symmetric, by Theorem 8.3.4, A is orthogonally diagonalizabl,

that is, there exist an orthogonal matrix P and a diagonal matrix D such

that 74P = D. Hence the main diagonal entries of D are the eigenvalues

of 4 and the columns of P are n eigenvectors of A. Since the columns of
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the orthogonal matrix P form an orthognormal set, the n eigenvectors of
A are orthonormal. [ |

Theorem 8.3.6
For a square matrix A of order n, the following are equivalent:
(1) 4 is orthogonally diagonalizable.

(2) A has n eigenvectors that are orthonormal.
(3) A is symmetric.

Q How to find an orthogonal matrix P diagonalizing a given symmetric matrix 47

-1 -11
For symmetric matrix A=|—1 2 4|, find an orthogonal matrix P
1 42

diagonalizing A.

Since the characteristic equation of 4 is [N —Al=A(\+3)(A\—6)=0, the
eigenvalues of 4 are A\, =—3,)\;, =0, A\; =6. Note that all the eigenvalues

are distinct. Hence there exist eigenvectors of 4 that are orthogonal:

-1 2 0
X, =|—1|, Xy=|—1|, X3 =11].
1 1 1
By normalizing x;, x,, X3, we get an orthogonal matrix P diagonalizing
A:
S i) [2 ], 2
VB Ve || V3 V6
1 1 —= 1 1 1
- -, 2 - |
73 5| | V2 NCRRVCREY
1 1 — 1 1 1
- - \/5
IRVET B RV V3 Ve V2




033

It can be shown that the matrix 4= |3 0 3| has eigenvalues \; = Xy =—3
330

(algebraic multiplicity 2) and A\; =6. Hence we need to check if X\, =—3

has two linearly independent eigenvectors. After eigenvector computation,

we get

that are linearly independent eigenvectors corresponding to eigenvalue

-3. Using the Gram-Schmidt Orthonormalization, we get

_1
—1 Xy ¥, —1 1 -1 2
n=x=|1 Yo = Xy I s Vi=1]0 D) 1= 1
0 il 1] 0 2
1
1 -— L
_ /6
Vi ) 2 LY 1
Z, = 7= s == |——=].
! ||Y1|| = 2 HYQH \/g
2 2
0 —_—
| V6 |
1
We can find an eigenvector x; =| 1| corresponding to the eigenvalue
1

A; =6 and normalization gives

S
\
N

Therefore, the orthogonal matrix diagonalizing A is given by

11
V2 V6 V3
1 1 1
P=lz,:2,:2,] = 72 V6 V3| u
2 1
0 V3

6
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[Remark] * Function of Matrices

e There are several techniques for lifting a real function to a square matrix
function such that interesting properties are maintained. You can read the
details in the following:

¢ https://en.wikipedia.org/wiki/Matrix_function

e http://youtu.be/B--ABwoKAN4

: " ()
o A1 0 .0 ol Tl ﬁ
€A=I+A+A_+i+... 0 A 1 Lo 0 % % : f(ﬂ—lgln
L3 flloo =~ if[=]0 o :
AAZIZ A333 . ,
M oT+AI+ T 4 S W | : Ly el
3 AN L R | Y [ 0 0 fi'l“} 1

[Automobiles with polygonal wheels and the roads
customized to the polygonal wheels]
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~, Quadratic forms
| @ Lecture Movie : http://youtu.be/vVWzHWEhAd—K, http://youtu.be/lznsULrqJ_0

o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—12—sec—8—4.html

A quadratic form is a polynomial each of whose terms is quadratic.

Quadratic forms appear in many scientific areas including
mathematics, physics, economics, statistics, and image processing.

Symmetric matrices play an important role in analyzing quadratic

forms. In this section, we study how diagonalization of symmetric

matrices can be applied to analyse quadratic forms.

Definition

An implicit equation in variables x, y for a quadratic curve can
expressed as
ax’ + 2bzy + ey’ +de +ey+ f=0. (1)

This can be rewritten in matrix-vector form as follows:

a bl||x T .
[z, y] b CHy]+[d,e][y]+f—0. (2)
[Remark] Graph for a quadratic curve (conic section)

The following are the types of conic sections:

@® Non-degenerate conic sections: Circle, Ellipse, Parabola, Hyperbola. See

Figure 1.

® Imaginary conic section: There are no points (z, y) € R® satisfying (1)

® Degenerate conic section: The graph of the equation (1) is one point, one
line, a pair of lines, or having no points.

Tas

Figure 1
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[Remark] Conic Sections in the Standard Position

2 2

. %4‘ %=1 (Ellipse) (3)
Y /N
O ® Q j &
a>b>0 b>a>0
1,2 2 2 2
. = y—2:1 or y_27 — =1 (Hyperbola) (4)
a b a b
Y
2 2 Y y_2_
g_j_-blj:l \/02 bZ_l
\a d/_‘ a
/ 0 ‘\x 0 &
M
. y* =az or z* =ay (Parabola, a > 0) (5)
) /N

il x'=ay
i

2=

S
R

ax

Y

(Non-degenerate conic section)
2 2

Since the equation 92° +4y*—144=0 can be written as %+ %21, the

graph of this equation is an ellipse. The equation 9x2—4y2+144=() has

2 2

the standard form %— f—6: 1 and hence its graph is a hyperbola. Since

the equation 3*+3z=0 can be put into ¢°>=—3z, its graph is a
parabola.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

- 320 -


http://sage.skku.edu
http://mathlab.knou.ac.kr:8080

var('x,y")

implicit_plot(9*x*2+4*y*2-144==0,(x,-8,8),(y,-8,8),axes=True,figsize=5)

(Degenerate conic section)

The graph of the equation z° =0 is the y-axis. The graph of y>*—9=0
consists of the two horizontal lines y=3, y=—3. The graph of
z?—y* =0 consists of the two lines y=z and y=—z. The graph of

z?+ 13> =0 consists of one point (0,0). The graph of z°+3*+1=0 has
no points. |

The graph of a quadratic equations with both z? and z terms or both y* and y
terms is a translation of a conic section in the standard position.

Let us plot the graph of 32°—2¢y*—18z+4y+19=0. By completing
squares in 3z®—2y* — 18z +4y+19=0, we get

3(z—3)—2(y—1)*=6. (6)

Hence by using the substitutions 2’ =2—3, y ' =y—1, we get

&P Wr

2 3 1

- 321 -



in the z'y -coordinate plane. This equation gives a hyperbola of the
standard position in the z’y’-coordinate plane. Hence the graph of the
equation (6) is obtained by translating the hyperbola in the standard

position 3 units along the z-axis and 1 unit along the y-axis.

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

var('x,y')
cl=implicit_plot(x*2/3-y*2/3-1==0,(x,-8,8),(v,-8,8),axes=True,figsize=5,color
='red")
c2=implicit_plot((x-3)*2/3-(y-1)*2/3-1==0,(x,-8,8),(y,-8,8),axes=True,figsize=
5,color="blue')

cl+c2

B

Quadratic Form

Definition ~ [Quadratic Form]

b c
is called the quadratic form of the quadratic equation (1).

[z, y] [a b} {Z] = az® + 2bzy + ¢y’ (7)

SN ’ The quadratic equations 2z°+6zy+y*, z*+3y* are quadratic forms, but

the quadratic equation 3z®— 6zy+y*—3z+1 has a linear term —3z and
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constant term 1 and hence it is not a quadratic form. [ |

@ A quadratic form can be written in the form of x’Ax. For example,

9 2 _ 3 —1][x] 2 2 _ _ [3 _2][I]
3z°+ 7y’ — 22y = [z y][_l 7)1y or 3z°+ 7y’ —2zy= [z y] 0o 7llyl

This means that the matrix A above is not unique.

We will use a symmetric matrix 4 to write a quadratic form:

a

aa?2+by2+casy= [z y] ‘

2

ST YR

ar’ + by’ + e’ tdoytexz+ fyz= [z y 2]

[ RO Y E=U
S Y

We use symmetric matrices to represent quadratic forms because symmetric

matrices are orthogonally diagonalizable.

Definition

Ty
. . X
Let A=[a;] be a symmetric matrix of order n and x=|.?| for n
xn
n
real values zy,z,, .., z,. Then g¢(x)=<{Ax,x>= x"Ax= Y] aox; is
Bhj=1

called a quadratic form in R".

@ For a quadratic form in z and y, the zy-term is called a cross-product term.

Using orthogonal diagonalization, we can eliminate the cross-product term.
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For a quadratic form

q(x) = xTAx = ax® + 2bxy + cy2,

the matrix 4= [Z i] is symmetric, we can find orthonormal eigenvectors v, v,

corresponding to the eigenvalues )\, A, of 4. The matrix P = [v, v,] is
)\1 0
0 A

we can switch the roles of v, and v, by switching the roles of A, and A\,,

orthogonal and P orthogonally diagonalizes A, that is, P7AP= . Since

without loss of generality, we can assume det(P)=1.

cosf —siné
sinf@ cosf

Therefore, we can consider P as the rotation matrix ] in R?. Let

x = Px’ for some x' = [z, ] Then

¢(x)=x"4x= (Px')TA(Px')= x")T(PTAP)X

11|y

’

x
’

Y

]: M) 42y

and hence ¢ is a quadratic form without any cross-product term in the z'y
-coordinate system. Therefore, we get the following theorem.

Theorem  8.4.1 [Diagonalization of a Quadratic Form]

Suppose a symmetric matrix A4 = [aij}2X2 has A, A, as its eigenvalues.

Then, by rotating the coordinate axes, the quadratic form q(x)szAx

can be written as follows in the z’y'-coordinate system
qx) =X @)+ X007 (8)

If the determinant of P is 1 and P diagonalizes A4, then the rotation

can be obtained by P’x=x" or x= Px’.

Using diagonalization of a quadratic form, determine which conic section
the following quadratic equation describes.
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3z% +2zy+3y° —8=0. (9)

The quadratic equation 3z°+2zy+3y*—8=0 can be written as

xTAx= [z y] E’ zl))] [;]28.

Since the characteristic equation of the symmetric matrix A4 is
A= XI1=(B3-)X)?—1=(\—2)(A\—4)=0, the eigenvalues of A4 are
A\ =2, )\, =4. By Theorem 8.4.1, ¢(x)=x"Ax =2(z')*+4(y')* . Hence, in
the new coordinate system, the quadratic equation becomes

202" ) +4(y ) =8.

Since eigenvectors corresponding to A, =2, A, =4 are

1 1
Vi= \/? v V2 T vz
_ 1
V2 V2 v y
respectively, the orthogonal matrix P '
diagonalizing A4 is /7
1 1 ON45° x
P= V2 V2 _ |cos (—45°) —sin(—45°) 2
1 1 sin(—45°) cos(—45°) |- X
V2 V2 !

Therefore z'y’-coordinate axes are obtained by rotating the zy-axis 45°
clockwise and the equation (9) is an ellipse in the standard position
relative to the z'y’-coordinate system. |

Sketch the graph of the following quadratic equation

342 — 242y + 41y* — 402 — 30y — 25 = 0. (10)
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34 —12
—12 41

equation (10) as follows:

Letting Az[ ], B=[—40, —30], x:[z}, we can rewrite the

xTAx+ Bx—25=0. (11)

Using rotation we first eliminate the cross-product terms. Since the
characteristic equation of A4 is

lA=X|=(A—25)(A—50)=0,

the eigenvalues of A4 are A =25, A\, =50 and their corresponding

. 1[4 11-3 .
orthonormal eigenvectors are v, =— AL respectively.

513 5
. 114 -3
Hence we can take P = [v, : v, ]13[3 4}.

Using axis rotation x= Px’, we get x’Ax=25(z")> +50(y')*> and Bx=
BPx'=—502" and hence from (11) we obtain

25(z")* +50(y’)* — 50z’ — 25 = 0. (12)

We now wuse horizontal translation to remove 2'-term in (12). By

completing the squares in (12) we get
25[(x" ) —2(z")+ 1]+ 50(y")* = 25+ 25 = 50.

That is, 25(z'—1)*+50(y’)> =50. Therefore, the equation (12) repesents

7

an ellipse in the z”y”-coordinate system

Yk
y” .I.'H 7\2 7\2
V2 G
4 - 1 x 5 + I 1
R _. where the z”y”-coordinate
L f7/tan1 3 ~36.87 ey
1 > system is obtained by

horizontally translating the z'y’
-coordinate system 1 unit along
the z'-axis. [ |
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[Remark] Simulation for quadratic forms

e http://www.geogebratube.org/student/m121534

BY ¥y duAY c29
DR ENCER
01 X8} 4l (quadratic form)
y
3+ 2xy+3y2=8 \

WX =( % v)(i " %)

BY ¥ MY =29

(5] AL 3 O] D) ) N o] e
0l X8 Al (quadratic form) \

7264 2xy +1.5y2=10

XTAX =( % v)(‘"f;) (¥

\ .

A=4,0)=2 A=7.3703,1,=1.3297

Q(x)= XA = 2(x)2+ 4(y)? )= XA = 1.3297(x)2 +7 3703(y)?

——

Surface in 3-dimensional space
Let
2= az’ + 2bzy + cy’ (13)
Then, after diagonalization, we get
2= )P+ X)) (14)

in the rotated z'y z-coordinate system. This enables us to identify the graph of the

equation (13) in R?.

In equation (14), if both X;, A\, are positive, then the graph of equation (14) is a
paraboloid opening upward (see figure (a) below). If both A\, and )\, are negative,

then the graph is a paraboloid opening downward (see figure (b) below). Since the
horizontal cross-section of each paraboloid is an ellipse, the above graphs are
called elliptic paraboloids.
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Y
X
/O ’
% -l
(a) (b)

Elliptic Paraboids

In (14) if both of A, and )\, are nonzero but have different signs, then the

graphs looks like a saddle in (a) and is called a hyperbolic paraboloid. If one of

A; and )\, is zero, then the graph is parabolic cylinder in (b).

7

B hyperboiic paraboloid S\ parabolic cylinder

' Show that the graph of the following equation is an elliptic paraboloid

and sketch its cross-section at z=50.

2= 34z — 24zy + 41 (15)

The quadratic form in (15) can be written as z= [z y][ 34 _12] [?ﬂ We

—12 41
first find an orthogonal matrix P diagonalizing the symmetric matrix
34 —12 B l[‘l _3} .
[_12 A1 } It can be shown that P = 5l3 4l and hence using

x= Px’, we can transform (15) into the following:
z=25(2")*+ 50(y’)? (16)

The equation (16) represents an elliptic paraboloid in the z2'y'z

-coordinate system. Note that the z'y -coordinate system is obtained by
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rotating the =z y-coordinate by angle 6 counterclockwise. Hence, in
x= Px', P is given by

4 —3]: [cos@ —sin@}

1
P= 5[3 4 sinf  cosé

and 0 = tan_l(%). Now we sketch the cross-section of equation (15) at

@) @)

z=>50. By substituting z =750 into (16), we get 5 + = 1 and hence
the graph looks like the following:
Ya
yl xi’
V2
1 6
AT
]

Let use Sage to graph equation (15)
http://sage.skku.edu

@O Computing eigenvalues of A4

A=matrix(2, 2, [34, -12, -12, 41])

print A.eigenvalues()

[50, 25]

@ Computing eigenvectors of 4

print A.eigenvectors_right()

(50, [(1, -4/3)1. 1),
(25, [(1, 3/4)]. 1)]

® Computing P diagonalizing A4

G=matrix([[1, 3/4], [1, -4/3]]) # Constructing a matrix whose columns
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# are eigenvectors
P=matrix([1/G.row(j).norm()*G.row(j) for j in range(0,2)])
# Normalizing the row vectors (The orthogonality follows from the fact #
that the eigenvalues are distinct)
P=P.transpose() # Constructing a matrix whose columns are orthonormal

# eigenvectors

print P
[ 4/5 3/5]
[ 3/5 -4/5]

@ Sketching two ellipses simultaneously

var('u, v')

s=vector([u, v])

B=P.transpose()*AxP

pl=implicit_plot(s*A*s==50, (u, -2, 2), (v, -2, 2), axes='true')
p2=implicit_plot(s*B*s==50, (u, -2, 2), (v, -2, 2), color='red', axes='true')
show(pl+p2) # Ploting two graphs simultaneously
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e Lecture Movie : hitp://youtu.be/cOW9qT64e0g
o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—12—sec—8—5.html

8 5W *Applications of Quadratic forms
|

By the theorem of principal axis (theorem 8.4.1), the graph of a 3D

curve is shown in the form of an plane, ellipse or parabola in 2D. The
specific shape is uniquely determined by signs of eigenvalues of the
corresponding quadratic form. In this section, we define the sign of the

quadratic form to identify the type of graph of given quadratic forms,
and learn how to obtain the extrema of multivariable functions using
them.

Given a system of springs and masses, there will be one quadratic form that
represents the kinetic energy of the system, and another which represents the
potential energy of the system in position variables. It can be found in the
following websites:

® Application of Quadratic Forms and Sage:
http://matrix.skku.ac.kr/2014-Album/Quadratic-form/
® http://ocw.mit.edu/ans7870/18/18.013a/textbook/HTML/chapter32/section09.html
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~, SVD and generalized eigenvectors

| @ Lecture Movie : https://youtu.be/ejCgebZjfiM, http://youtu.be/7—qG—A8nXmo
e Lab : hitp://matrix.skku.ac.kr/knou—knowls/cla—week—12—sec—8—6.html

We have learned that symmetric matrices are diagonalizable. We

now extend the concept of diagonalization to m Xn matrices (not

necessarily square or symmetric) resulting in a matrix

decomposition and study pseudoinverses and least squares solution

using the matrix decomposition.

Theorem 8.6.1 [Singluar Value Decomposition]

Let A4 be an m Xn real matrix. Then there exist orthogonal matrices U
of order m and V of order n, and an m Xn matrix X such that

UTAV= (El 0)

00> (1)

where the main diagonal entries of X, are positive and listed in the

monotonically decreasing order, and O is a zero-matrix. That is,

04 0 | o0 0
) | 0 0
| SR
A: UEVT: [u1UQ ukuk+1 um] O Uk —:— 0 O V2
0 0 010 0 |v,
: | E
0 0 010 0 |

where o, 2 0,2 -2 0, > 0.

Definition

Equation (1) is called the singular value decomposition (SVD) of A4.
The main diagonal entries of the matrix X are called the singular
values of 4. In addition, the columns of U are called the left singular
vectors of A4 and the columns of V7 are called the right singular

vectors of 4.

The following theorem shows that matrices U and V are orthogonal matrices

diagonalizing 447 and A 7A, respectively.
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Theorem 8.6.2

Let the decomposition 4= UX VT be the singular value decomposition
(SVD) of an mxn (m > n) matrix A where oy,...,0, are positive diagonal

entries of Y. Then

(1) VHATA)V=diag(o?, 02 ... 0% 0, ..

- O)an'

(2) UNAATU=diag(o?, 02, ..., 62,0, ..

20)

Since A= Ux V7T, it follows that ¥= U7AV. Hence, by considering, >ty
and Y7 we get

viaTAv=y'=diag(o}, 03, .., 020, .., 0)  and
UlAATU=x = diag(a?, og, ey az, 0, ..., O)me,
respectively. |
) . 3
FndtheSVDofA[f }
1 0 \/§
. 3 0 ][v3 2 3 23
The eigenvalues of ATAZ[\/_ } }: ] are A\ =09,
lgenvaiu 2 V3l o 3] l2v3 7 !
A =1 and hence the singular values of A are
oy =M =3,0,= /A =1.
1
G . . 2
A unit eigenvector of 474 corresponding to A =9 is v, = V3| and a
2
V3
unit eigenvector of 474 corresponding to A =118 vy = 12 . We

can also find unit eigenvectors of 447

V3 1
1 1
u, = (O'_lAvl :) 2

1
2
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Hence we get

V3 1 1 V3
2 2 2 2
U= [u, u,]= L V=1[v, v]=
[1 2] l \/§ [1 2] \/§ l
2 2 2 2
Therefore, the SVD of 4 is
3 1 1 V3
_ T V3 2 ]: 2 2 [30] 2 2
A=UXV"' & [0 3 1 V3 [lo1 _\/§ 1]
2 2 2 2

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

@ Computing the singular values of A and eigenvectors of 474

A=matrix([[sqrt(3), 2], [0, sqrt(3)]])

B=A.transpose()*A

eig=B.eigenvalues()

sv=[sqrt(i) for i in eig] # Computing singular values

print B.eigenvectors_right() # Computing eigenvectors of 474

(9, [(1, sart3)], 1), (1, [(1, -1/3*sqrt(3))], 1)]

® Computing V7’

G=matrix([[1, sart(3)], [1, -1/3=*sqrt(3)]])
Vh=matrix([1/G.row(j).norm()*G.row(j) for j in range(0,2)])
Vh=Vh.simplify() # Transpose of V

print Vh

[ 1/2 1/2*sqrt(3)]
[1/2*sqrt(3) -1/2]

® Computing eigenvectors of A4 7

C=Ax*A transpose()

print C.eigenvectors_right() # Computing eigenvectors of 447

[(9. [(1, 1/3%sqrt(3))], 1), (1, [(1, -sqrt(3))]. 1)]
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@ Computing U

F=matrix([[1, 1/3*sqrt(3)], [1, -sqrt(3)]])
U=matrix([1/F.row(j).norm()*F.row(j) for j in range(0,2)])
U=U.simplify().transpose() # U

print U

[ 1/2xsqrt(3) 1/2]
[ 1/2 —1/2*sqrt(3)]

® Computing diagonal matrix S

S=diagonal_matrix(sv); S

[3 0]
[0 1]

® Verifying 4= USV7’

U*S*Vh

[sqrt(3) 2]
[ 0 sqrt(3)] [ |

Equivalent statement of invertible matrix on SVD

Theorem 8.6.3

Let A be an nXxXn matrix. Then 4 is a nonsingular matrix if and only

if every singular value of A is nonzero.

Since det(4A47) = (detA)®, matrix 4 is nonsingular if and only if 447 is

nonsingular. Hence, if 4 is nonsingular, then all the eigenvalues of 447
are nonzero. By Theorem 8.6.2, the singular values of A4 are the square

roots of the positive eigenvalues of A4 7. Hence the singular values of A
are nonzero. [ |
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Theorem 8.6.4

Suppose oy 2 0, 2 --2 o, are the singular values of an m Xn matrix 4.

Then the matrix A can be expressed as follows:

A=Y ouv/. (R)
=

J

The equation (R) is called a rank-one decomposition of 4.

Note that the pseudoinverse of a matrix is important in the study of the least
squares solutions for optimization problems.

We can express an nXn nonsingular matrix 4 using the SVD
A=Uusv?’. (2)

Note that all of U, XY, V are nXxXn nonsingular matrices and , in particular,
U, V are orthogonal matrices. Hence the inverse of A can be expressed as

A=y tul. (3)

If A4 is not a square matrix or A4 is singular, then (3) does not give an inverse

of A. However, we can construct a pseudoinverse 4" of A by putting ¥ in (2)

into the form XY= {201 g (where X, is nonsingular).
Definition [Pseudo-Inverse]

For an mxn matrix A the nxm matrix A'= VX' U? is called a
pseudo-inverse of 4, where U, V are orthogonal matrices in the SVD
of A4 and X’ is

—1
Yy = [E‘ 0} (where X, is nonsingular).
o O

We read A7 as 4 ‘dagger.” If A= O, then we define A'=o0.

Truncated SVD
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What is a truncated SVD?

We learned that singular value decomposition factors any matrix A4 so that

. . X .
A=US VT . Let's take a closer look at the matrix S. Remember $§= {01 g 1S a
o 0
diagonal matrix where X, = 7 and 0,2 0,2 -2 0, >0 are the
0 e O,

singular values of the matrix 4. A full rank decomposition of A4 is usually denoted
by A, = U, X, V.' where U, and V, are the matrices obtained by taking the first r
columns of U and V, respectively. We can find a k-rank approximation (or
truncated SVD) to 4 by taking only the first & largest singular values and the first

k columns of U and V.

11
Find a pseudo-inverse of A= |0 1J.
10
We first compute the (truncated) SVDU of A4:
http://matrix.skku.ac.kr/2014-Album/MC.html
s ) )
, 3 V2 V2
A:[uu][alo Vil V6 V2 [ﬁo] 2 2
0 oo v 6 2 01 2 V2
6 2 2 2
6 2
Then
1 Vi V2 |, Y6 VB Ve
; or O |[uf 2 2 ||—=o0[| 3 6 6
A _[Vl V2] L u = \/5 \/5 \/§ 2 2
0 2 N2 _ V2o 1]| 0o —ME N2
1 2
13 3 3
o2 1 "
3 3 3

1) http://langvillea.people.cofc.edu/DISSECTION-LAB/Emmie'sLSI-SVDModule/p5module.html
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e http://matrix.skku.ac.kr/RPG_English/8-MA-pseudo-inverse.html

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

A=matrix(RDF,[[1,1],[0,1],[1,0]])
import numpy as np
Pinv=matrix(np.linalg.pinv(A))

Pinv

[ 0.333333333333 -0.333333333333 0.666666666667]
[ 0.333333333333 0.666666666667 -0.333333333333]

If A=layl, «, has rank(4)=n, then A is said to be of the full column rank. If

A has full column rank, then 474 is nonsingular. If A is nonsingular, then the

pseudo-inverse of A4 is equal to A4~ .

Theorem 8.6.5

If an mXxXn matrix A has full column rank, then the pseudo-inverse of
A is

At=(ATa)y AT

Let A=UX V" be the SVD of 4. Then ¥ = [%] where Y, is nonsingular.

Then
ATa=(vxTuv\(vevh=vsive

Since A has full column rank, 474 is nonsingular and matrix V is an nxn

orthogonal matrix. Hence (4 r A) = VE;2 VT and

ATa)y A= (v 2vD(uzv = (v tvD(veTu?)
(vertvhvie, oluh=v]z "t oluT=4", [
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) Find the pseudo-inverse of 4 using theorem 8.6.5.

AN
[

— O =
O = =
—_—

Since A has full column rank,

11
ATA:H?})] lo 1}2[% ;] is nonsingular and
10
2 _1 1 _1 2
f_ (A4 T\ 14T 3 3 [101]: 3 3 3
SR U O | FE Nl FORE S | -
3 3 3 3 3

Theorem 8.6.6

If A" is a pseudo-inverse of A4, then the following hold:

(1) A4T4a=4

(2) AtaaT=4"1

(3) (44 ) = 44"

(4) (474)" A*A

(5) ( ATY

(6) ATT
(Exercise)
[Remark]

A pseudo-inverse provides a tool for solving a least sqaures problem. It is known that
the least squares solution to the linear system Ax=Db is the solution to the normal

equation 4 “Ax= A "b. If A has full column rank, then the matrix 4 74 is nonsingular
and hence

x= (A74)'A"p = A"b.
This means that if A4 has full column rank, the least squares solution to Ax="Db is the

pseudo-inverse A" times the vector b.
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Theorem 8.6.7

Let A be an mxn matrix and b be a vector in R". Then x=A'b is
the least squares solution toA4x=b.

X, 0

Let A=UXV” be the SVD of 4 with ¥ = [O 0}(21 is nonsingular). Then

> o

A=y UT= V[ 5 0} U” and hence A'b= VX' U™, Since

ATAA D =vE"SVIVE U= VvE"SYN ' U™

2 —1
_ V[El 0} b 0} UTh= Vs U= AT,
ooll oo
it follows that x= A b satisfies 4 74x= 4. [ |

Find the least squares Iline passing through the four points
(0,1), (1,3), (2,4), (3,4).

Let y=mx+b be an equation for the line that fits to the points
(0,1), (1,3), (2,4), (3,4). Then, by letting x= (b m)?, the given
condition can be written as the linear system Ax=Db for which

10 1
111 13
A—12 andb—4

13 4

Since 4 has full column rank, we get 4" =(474) 'A 7" which is

(]

— 3
at=1| 10 10 [1 I 1] . Hence x=A'b=|2]|. Therefore, the least
_3 2 |lo12s .
10 10
. . . 3
squares line is given by y=x+ —. [ |

2
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Permalink, Shortened Temporary Link

2 z+3/2

Powered by SOGE.

var('x, y')

pl=plot(x + 3/2, x, -1,3, color="blue');

p2 = text("$x+ 3/2 $", (2,2), fontsize=20, color='blue')
show(pl+p2, ymax=4, ymin=-1)

in http://matrix.skku.ac.kr/Cal-Book/partl/CS-Sec-1-3.htm

Team <3D Math> comprises Professor Sang-Gu LEE, and 3 mathematics major students
including Jaeyoon LEE, Victoria LANG, Youngjun LIM, won the prize with ‘DIY Math Tools
with 3D printer’ for the Korea Science and Technology Idea Competition 2014 co-organized
by the Korea Foundation for the Advancement of Science and Creativity, the Ministry of
Science, ICT and Future Planning, the National Museum of Science and YTN.

https://www.facebook.com/skkuscience
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\
@ Lecture Movie : http://youtu.be/8_uNVj_OIAk, http://youtu.be/Ma2er—9LC_g
e Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—13—sec—8—7.html

8 7\ Complex eigenvalues and eigenvectors
[ |

We have so far focused on real eigenvalues and real eigenvectors.
However, real square matrices can have complex eigenvalues and

eigenvectors. In this section, we introduce complex vector spaces,

complex matrices, complex eigenvalues and complex eigenvectors.

Complex vector spaces

Definition [Complex Vector Space]

The set of vectors with n complex components is denoted by
C"={(zy, 29 .o 2) |2, EC k=1,2, ., n}.

If we define the vector addition and the scalar multiple of a vector in

C" similar to those for R", then C" is a vector space over C and its

dimension is equal to n.

It

then a vector v in C" can be expressed as v=ze, + 2,6, ++2,e, where z,'s
are complex numbers, and the set {e;, e,, ..,e,} is a basis for C". This basis

is called the standard basis for C".

For a complex number z=a+bi, z=a—bi is called the conjugate of z and

Izl = Va®> +b* is called the modulus of 2. Furthermore, if we denote a complex

. b
number z as z=r(cos#+isind), then r=|z| and tan 6= — For a complex vector

u =(uy, Uy, ..., u,), we define its conjugate as u= (u;, uy, ..., u,).

e [Example] http://matrix.skku.ac.kr/RPG_English/9-VT-conjugate.html

- 342 -


http://youtu.be/8_uNVj_OIAk
http://youtu.be/Ma2er-9LC_g
http://matrix.skku.ac.kr/knou-knowls/cla-week-13-sec-8-7.html
http://matrix.skku.ac.kr/RPG_English/9-VT-conjugate.html

Inner product

Definition [Inner Product]

Let u= (uy, uy, ..., u,) and v= (v, vy, ..., v,) be vectors in C". Then
u v= U—lul +v_2u2 +-~~+v_nun =<u, v>
satisfies the following properties:

(1) <u,v>=<v, u>

(2) <utv,we>=<u, w>+<v, w>
(3)

(4)

3
4

<cu,v>=c<u, v>

<v,v>2 0, in particular, <v,v> =0 ¢ v =0

The inner product u- v is called the Euclidean inner product for the

vector space C".

Definition

Let u= (uy, uy, ..., u,), v= (v, vy ..,v,) be vectors in C". Then,

using the Euclidean inner product u- v, we can define the Euclidean

norm |lull of u and the Euclidean distance d(u, v) between u and v as

the following:
1
() Null= @ w)?= P+ P+ +lu, P

2) d(w, v) = llu=vll= y/lu, — o, +luy — v, P4+, — v, .

o If u- v =0, then we say that u and v are orthogonal to each other.

h 4
A !
\\. !
. a LY Lo
el
\\\ R \ / »
ol -~ - 5 - | .
- - \ - L
\\ sl X = M / - g
R | S L=
u-v <0 u-w =0 u-w >0
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w For vectors u=(24,0,1+3i),v=(2—14,0,14+3i), compute the Euclidean
inner product and their Euclidean distance.

wv= (2—i)(2i)+0- 0+ (1+35)(1+34)
=(21)2+i)+0+(1+3i)(1—3i)=4i +2i>+1—9i>=8 +4i

du, v)=llu=vll= VI2i— @= )P +10— 02 +1(1+3i)— (1+3i)

=|—2+43iP+0+0=V41+9= /13 O

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

u=vector([2*], 0, 1+3*I]) # [ is the imaginary unit.
v=vector([2-1, 0, 1+3x]])

print v.hermitian_inner_product(u) # Taking the conjugate for v
# < u, v > = v.hermitian_inner_product(u)

print (u-v).norm()

4x] + 8
sqrt(13) [ |

Complex Eigenvalues and Eigenvectors of Real Matrices

We should first define complex eigenvalues and complex eigenvectors along with

example.

Theorem 8.7.1

If XA is a complex eigenvalue of an nXxXn real matrix 4 and x is its
corresponding eigenvector of A, then the complex conjugate A of X is

also an eigenvalue of 4 and x is an eigenvector corresponding to \.

ZF  Since an eigenvector is a nonzero vector, x# 0 and x# 0. Since Ax= A\x

and A is real (i.e., A= A), it follows that Ax= Ax= \X= \X. [ ]
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Eigenvalues of Real Symmetric Matrices

Theorem 8.7.2

If A is a real symmetric matrix, then all the eigenvalues of 4 are real

numbers.

Let A be an eigenvalue of A, that is, there exists a nonzero vector x such

that Ax= Ax. By multiplying both sides by x = X—T on the left-hand side, we

*

X Ax
II?

get x Ax=x (O\x)=Xxx=\(x- x)=Alx/[>. Hence A= . Since |xI? is a

[Ix

nonzero real number, we just need to show that x Ax is a real number.
Note that

X Ax=x Ax= x7(Ax) = (Ax)Tx= (4x)"x=x A 'x=x Ax.

* .
Therefore, x Ax is a real number. [ |

a —
b

that if (a,b)# (0,0), then C can be decomposed into

' Show that the eigenvalues of C=

2} are A=a=xbi. In addition show

)

[a—b
b a

=[] s ~eose

where ¢ is the angle between the z-axis and the line passing through
the origin and the point (a, b).

Since the characteristic equation of € is (A—a)?+b* =0, the eigenvalues
of C are A=azxbi. If (a,b)# (0,0), then a=IMcos¢, b=I|Nsing.

Therefore,
a _b
a—b}:[w 0] Y I\ :[|)\| 0] cos¢ —sing -
b a 0 NIfb a 0 IXl] [sing  cose
I A
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(a, b)
"

“Pure mathematics is, in its way, the poetry of logical
ideas."

Albert Einstein (1879-1955)
http://en.wikipedia.org/wiki/Albert_E
instein

He developed the general theory of
relativity, one of the two pillars of

modern physics (alongside quantum

mechanics)
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~, Hermitian, Unitary, Normal Matrices

| @ Lecture Movie : http://youtu.be/8_uNVi_OIAk, hitp://youtu.be/GLGw]6tzd60
o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—13—sec—8—8.html

[ We used M, to denote the set of all nXn real matrices. In this

section, we introduce M, (C) to denote the set of all nxn

complex matrices. Symmetric matrices and orthogonal matrices in
M

n

can be generalized to be Hermitian matrices and unitary

matrices in ML(C’), We shall further study the diagonalization of

Hermitian and Unitary matrices.

Conjugate Transpose

Definition [Conjugate Transpose]

For a matrix A= [a;;] €M, .,(C), A is defined by

m Xn

A = [a;leM, ., (O).

The transpose AT of the complex conjugate of A is called the

conjugate transpose and is denoted by A, that is,
A= AT=la; 1,0
[Remark]

. . N 0 * *
* The Euclidean inner product in ¢": u- v=vu, [ul>=u'u

e If a matrix A4 is real, then 4 =47,

For matrices A= |"," 5 . 1—2i 0 3 41"

conjugate transposes are

w [1+i —i 0], B:[ 1 1+2i]’ C:[l 2] their
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1—i 2 .
| 1 e [ 1 142 .+ _[13
A= 0 3_+i2”B[1—2¢ 0 ]’C*[M}' u

Theorem 8.8.1 [Properties of Conjugate Transpose]

For complex matrices A, B and a complex number ¢, the following

hold:
(1) (A =4.
(2) (A+B)"'=4"+B",
(3) (cA)' =cA".
(4) (AB)' =B'A"

Proof of the above theorem is easy to verify and left as exercises.

Hermitian Matrix

Definition [Hermitian Matrix]

If a complex square matrix A4 satisfying A=A", A is called a
Hermitian matrix.

;. In , A# A" and hence A4 is not Hermitian. However, since

B =B, B is Hermitian. [ |

Theorem  8.8.2 [Properties of Hermitian Matrix]

Suppose A € M, (C) is Hermitian. Then the following hold:

(1) For any vector x € C", the product x Ax is a real number.

(2) Every eigenvalue of A is a real number.

(3) Eigenvectors of A corresponding to distinct eigenvalues are
orthogonal to each other.

http://people.math.gatech.edu/~meyer/MA6701/modulell.pdf
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1 0 0
0 21—1
01+74 0

equation of A is |[A—-XIl=(0—1)A*—2XA—2)=0 and hence the
eigenvalues of 4 are A=1, 1+ /3, 1— /3, which confirms that all the

eigenvalues of a Hermitian matrix 4 are real numbers. Furthermore, it

Let 4= . Since A:A*, A is Hermitian. The characteristic

can be shown that the eigenvectors x, y, and z

x=(1,0,0), y= (0, (— 1, %)(— 1+ /3), 1), z= (0, (l— %)(H V3), 1)

2 2
corresponding to A=1, A=1++3, and A=1— /3, respectively, are
orthogonal to each other. [ |

Skew-Hermitian Matrices

Definition [Skew-Hermitian Matrix]

If a complex square matrix A satisfies 4=—A", then A is called a
skew-Hermitian matrix.

It can be verified that both matrices 4 and B below are

skew-Hermitian:

—i —5i 00 ¢ . i 5i .
A:[ ! Z.],B:OiO,A :[. .]:—AandB:—Bl
-5 3 i 00 5t — 3

Each matrix AEM,,(C) can be expressed as A= H + K, where H is Hermitian

and K is skew-Hermitian. In particular, since A+ A" is Hermitian and 4— 4" is

skew-Hermitian, every complex square matrix A4 can be rewritten as

A:%(A+A*)+%(A—A*).
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Unitary Matrices

Definition [Unitary Matrix]

If matrix UEM,(C) satisfies U U =1,, then U is called a unitary

matrix. If U is unitary, then U = U '. In addition, if the jth column
vector of U is denoted by u;, then

* 1 )
u; uj_ <u,,;,uj> —ujui— {0 (’L?’—' J)

Therefore, U is a unitary matrix if and only if the columns of U form

an orthonormal set in C".

Show that the following matrix A4 is unitary:

a=5h5F at
Since A*Z%H:i —}4—_2] the product
A*A:iH:Z _ii;”ij; _}iz]:[é (1)]:[2. Hence A=[a,: a,] is a

unitary matrix. We can also show that

_ro 1 i=j)
a3 a; = a al—{o G%3)
* 1 )
For example, a; a, = a, alzz[H—i —1+i}[}tﬂ=0 [ |
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Theorem  8.8.3 [Properties of a Unitary Matrix]

Suppose C" has the Euclidean inner product and U is a unitary
matrix. Then the following hold:

(1) For x,yecC", (Ux)- (Uy)= (x- y), which implies ||Ux| = IIx]|.

(2) If X\ is an eigenvalue of U, then |A|=1.

(3) Eigenvectors of U corresponding to distinct eigenvalues are
orthogonal to each other.

The property ||Ux|l=|Ixll of a unitary matrix U shows that a unitary matrix is an

isometry, preserving the norm.

Unitary Similarity and Unitarily Diagondlizable Matrices

Definition ~ [Unitary Similarity and Unitary Diagonalization]

For matrices A, BEM,(C), if there exists a unitary matrix U such

that U AU= B, then we say that 4 and B are unitarily similar to
each other. Furthermore, if A€M (C) is unitarily similar to a

diagonal matrix, then A is called unitarily diagonalizable.

RS Let 4= [ 2. l] and U= L[Z _1 ] Then it can be checked that U
: -2 V2 L1 —i
. . : oo L[—=i 1] 2 d][i —1]_[30
Is a unitary matrix and UAU—2[_1 zH—z 2H1 —i]_[o 1].
Therefore, A is unitarily diagonalizable. [ |

If A€M, (C) is unitarily diagonalizable, then there exists a unitary matrix U

such that U AU=D=diag(A\,\y .., A,) and hence AU= UD. Letting

n

U: [U(l). U(2): cee 2 U(”)] , we get’

(AU AU® i g™ ]=A0=UD= [\ U 20 x0T
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This implies that the column U of the unitary matrix U is a unit eigenvector
of A corresponding to the eigenvalue A,.

2 1—@]

' Find a unitary matrix U diagonalizing matrix A = [1_”. 1

The eigenvalues of A are A =0,A,=3 and their corresponding

eigenvectors are

Alzo = X1:|:1__~_1Z:|, )\2:3 = X2:[1IZ}

Letting u :L:L[il] u :izi[lii}
S 131 VT B ok 2 I | RV
and U= [uluZ]zL[_1 1”] it follows that
/3 li+i 1 ]
* _1{—-11-4 2 1—4¢||—1 1—4|_ |00
vAU= 3{1+i 1 HHZ- 1 H1+i 1 }_[o 3]
where U is a unitary matrix. [ |

Schur’s Theorem

Transforming a complex square matrix into an upper triangular matrix

Theorem  8.8.4 [Schur’s Theorem]

A square matrix A is unitarily similar to an upper triangular matrix
whose main diagonal entries are the eigenvalues of A. That is, there
exists a unitary matrix U and an upper triangular matrix 7' such that

UAU=T=[t;]€ M, (C), t;=0(i> j),

where t;’s are eigenvalues of A.

Let A, A, ..., A, be the eigenvalues of A. We prove this by mathematical
induction. First, if n=1, then the statement holds because A=[\]. We now
assume that the statement is true for any square matrix of order less than or

equal to n—1.
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D Let x, be an eigenvector corresponding to eigenvalue ).

® By the Gram-Schmidt Orthonormalization, there exists an orthonormal basis for

C" including x,, say S={x,.2, ..., z,}.

® Since S is orthonormal, the matrix U,= [x, :z,: - :z,] is a unitary matrix. In

addition, since 4x, =\x,, the first column of AT, is A\x,. Hence U,(AU,) is of

I

where 4,€M,_,(C). Since IN[,—A|l=(\—X\,) I\I,_,—A,|, the eigenvalues of A4, are
Agr Ay o A

the following form:

n*

@ By the induction hypothesis, there exists a unitary matrix IZE M, ,(C) such

that
Ay *
~ - 0
AU =
0 - A,
i Q0
® Letting U, = 0 . e M, (C), we get
A *
* * * 0 /\2 *
(G0 A0 = 6 = | g
00 - A,
Since U= U[,U; is a unitary matrix, the result follows. |

o [Lecture on this proof] http://youtu.be/ILOVdATSt]DM

o Not every square matrix is unitarily diagonalizable. (see Chapter 10)

N

Issai Schur

Jesse Byrne & Charlotte Simmons
University of Central Oklahoma
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Normal matrix

Definition [Normal Matrix]

If matrix A€ M, (C) satisfies

AA =4 A,
then A is called normal matrix.

It can be shown that the following matrices A and B are normal:
: —1+i 1+

2+2i 1 1—1

A= 13@. 1_2H. B=| i —2 1-3i
5 > 1—i 1—3i —3+8i

A Hermitian matrix A satisfies 4=A4" and hence A4 = A4 =A"A. This
: implies that any Hermitian matrix is normal. In addition, since a unitary

matrix B satisfies BB = 1, = B'B ., it is a normal matrix. |

Equivalent Conditions for a Matrix to be Normal

Theorem 8.8.5

For matrix 4 €M, (C), the following are equivalent:

(1) A is unitarily diagonalizable.
(2) A is a normal matrix.

(3) A has n orthonormal eigenvectors.

Example 1 .

o2 1 [z —1]
Let A—{_Z. 2] and U_—ﬂ 1 —il
Show that A is a normal matrix and the columns of U are orthonormal
eigenvectors of 4.
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Since 4 = {_21 ;] =A", AA"=A"Aand hence 4 is a normal matrix.
i _ 1
Letting U= \/15 \1/5 = [u;: uy], we get
Vo2
1 1
2 4 \/5 . \/5 o
Aul—[_i 2] 1 =3 1 = 3u,,
V2 V2
1 1
Au, = [_2 l] ‘/5 = V2 =1lu,.
t 21| 4 o
V2 V2
Thus u, and u, are eigenvectors of A. In addition, since |[u,|l = [lu,ll =1
and u;- u2=u;u1 =0, u; and u, are orthonormal eigenvectors of 4. N

Unitarily diagonalize A = [_3 ;]

Note that matrix A is Hermitian and its eigenvalues are A\, =3, A\, =1.

i

1}. By normalizing it, we

An eigenvector corresponding to A\, =3 is x; = [

Xy 1 [z

et u, = = — ] Similarly, we can et a wunit eigenvector
8L W T T 7 L Y 8 8

1 -1 .
uQT[_.] corresponding to A, = 1.
2 1
. _ . 1 fi =1 * 130
Taking U—[ul.UQ]——ﬁ [1 —z’]’ we get UAU—[O 1]. [ |
[Remark]

Although not every matrix A is diagonalizable, using the Schur’'s Theorem, we

can obtain an upper triangular matrix J, (close to a diagonal matrix) similar to
A. The upper triangular matrix J, is called the Jordan canonical form of A4.

The Jordan canonical form will be discussed in Chapter 10.
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~\, *Linear system of differential equations
| o Lecture Movie : http://www.youtube.com/watch?v=cOy5DcNQ8gs
o Lab : http://matrix.skku.ac.kr/knou—knowls/cla—week—11—sec—8—1.html

Many problems in science and engneering can be written as a
mathematical problem of solving linear system of differential
equations. In this section, we learn how to solve linear system of

differential equations by using a matrix diagonalization.

M Detais can be found in the following websites:
http://www.math.psu.edu/tseng/class/Math251/Notes-LinearSystems.pdf

http://matrix.skku.ac.kr/CLAMC/chap8/Page83.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page84.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page85.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page86.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page87.htm

Direction field of differential equation

2 T T T
////,,,\,;
AN
A N
-~
ost 1 s L . ? N
. ol (R T . \
| Vo L
§_0.5 ’\\ \ AN ~ - . Y / {
A \ NN o~ _ sy /
BN e
-15 \\\\“‘,///
_2,\\\\‘\\&61‘/‘//
72452 5 -2 -1.5 -1 —0i5 ] 0.5 1‘ 15 2

discover. ”

Jules Henri Poincaré (1854 - 1912)
http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9

He is often described as a polymath, and in mathematics as '
The Last Universalist by Eric Temple Bell,[3] since he excelled in all fields

of the discipline as it existed during his lifetime.
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e http://matrix.skku.ac.kr/LA-Lab/index.htm
e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

Ty ™ To
T, Tz,

Ty
Ly

)=

and o= {[1],[_ 1]} is an ordered basis for R?. Find the matrix

Suppose a linear transformation 7' is defined by T(

1 0
representation [7], of 7 relative to the ordered basis «.

T —2y
Let 7 : R2= R? be defined by d[x])z sz—y | and let o= {v,, v,},
Y 22 + 3y

6= {v,,v,, v.'} be ordered bases for R*, R?®, respectively, where
1 2 3

1 1 0 0 1
Vlz[o]’ V2:[0]v V1'=(1), V2,:é, V3':8. Find the matrix

representation [T]g of T with respect to the ordered bases « and §.

Suppose a linear transformation 7 :R%*- R? is defined by T([g])z

5] ana o= {[2] (2]}, o= {2 1) oo onare bases o

R2
(1) Find the matrix representation [7], of 7T relative to the ordered basis «.

(2) Find the transition matrix = []§ from 8 to a.

(3) Compute P~ ' [7],P.
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(2) P= (17 = llyla:lysl, ]

1 0 1
> 0]+a2 1} = [J,al: l,ay, =1,
1 0 2
1 0fo] = Pl =21
o lagby| [12]
= P_ QQbQ} - 11
_ —1 4 — 12 1
() PTN.P = [ 1 —1] [—gi] [11] = [0—02] =

Determine if the given matrix A is diagonalizable. If A4 is
diagonalizable, find matrix P diagonalizing 4 and the associated

diagonal matrix D such that D=P 'AP.

wa-] 37y

A=matrix([[2,1,1].[1,2,1].[1,1.,2]])
print A.eigenvectors_right()

xl=vector([1, 1, 1])
x2=vector([1, 0, -1])
x3=vector([0, 1, -1])
P=column_matrix([x1,x2,x3])
print P

print P.det()
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Find the algebraic and geometric multiplicity of each eigenvalue of A:

10 -1
A=101 2.
21 2

Find matrix P orthogonally diagonalizing matrix A and the diagonal
matrix D such that PTAP= D, using Sage.

12 2
A=12 1 —2].
2—-21

Sage:

A=matrix(QQ,3,3,[1,2,2,2,1,-2,2,-2,1])

A.eigenvalues()
[-3, 3, 3]

A=matrix(QQ,3,3,[1,2,2,2,1,-2,2,-2,1])
A.eigenvevtors_right()
[(-3, [(1, -1, -1)], 1), (3, [(1, 0, 1),(0, 1, -1)], 2)]

C=matrix(3,3,[0,2/sqrt(6),1/sart(3),1/sart(2),1/sart(6),-1/sart(3),-1/sqrt(2),1/s
art(6),-1/sart(3)])

C.transpose()*C
[1 0 0]

[0 1 0]
[0 0 1] |

In each of the following matrix 4 and set S of linear independent
eigenvectors of A are given. Find an orthogonal matrix P and a

diagonal matrix D such that PTAP= D.

M a=|"3_% s=1-22) 65

@a=|12 s=12 1. 0, -2,
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Compute ¢(x)=x"A4x when

x_

3 2 1
A=1—-1 0 —4|,x=|y
5 —2 1 z]
3 2 1 ][«
q(z,y,z)ZXTAX = lzyz]|—1 0 —4||y| = 3x2+22+xy+6xz—6yz.
5 —2 1 |lz

Write the following expression as a quadratic form x”Ax:

2w2+3y2+z2+$y—2m2+3y2.

2 1/2—1][=x
1/2 3 3/2 M
—-13/2 1 ]lz

Sage ©  ___

q¢(z,y,2)=x"Ax = [zyz]

a=2; b=3; c=1; d=1; e=-2; f=3
A=matrix(3,3,[a,d/2,e/2,d/2,b,1/2,e/2,1/2,c])
X=matrix(3,1,[x,y,z])

print expand(X.transpose() * A * X)

[2%X72 + X*y - 2xx*7Z + 3xy*2 + 3xy*xz + z"2].

Eliminate the cross-product term from the following:

q(x, y) =z 2a:y+y2.

Sketch the graph of the following equation:

2+ dzy+ 4y +62+2y—25=0

x’Ax+ Bx—25=0 where 4= [1 2]’5’: [62]’X=[;]'

24

=> )\1:57)\2:0 => V1:

% B] V2T % [—21]
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_ _L 1 2} _ ’ 2 ’ ’r_ _
= p= \/3[2_1. x =Px and 5z?+2V52' +2v/5y —25=0.
’ 1 ’ 2
=> =——(26— 52 +1
Y 2\/3( (V5 )
Sage '
var('x y')

f=X"2+4*xX*y+4*y  2+0xx+2xy-25
implicit_plot(f==0, (x,-10,10), (y,-10,10))

Eliminate the cross-product terms from the quadratic surface
52+ 6y + 72 + 4zy+4yz =1 by properly rotating the axes.

Compute the singular values of matrix A4:

A=1[120].

Find the SVD of 4:

110

01 01 110
AAT:[%H 11}:[%%}, AT4 = 11“0”]={121}

aat = matrix(QQ,2,2,(2,1,1,2])
ata = matrix(QQ,3,3,[1,1,0,1,2,1,0,1,1])
print aat.right_eigenvectors()

print ata.right_eigenvectors()
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[ 1 1 1

L L FORERE]

2 -1
e e R Bl v U
V2 V2 IR T

V6 vz V3

(12 1]

11 V6 V6 V6

vz V2 RS N
IVERRVERRVER

In the below the SVD of A4 is given. Find 4.

[ 1 2 1]
I V6 V6 Ve
g V2 ﬁ[ﬁOO}LO_L
11 florol|ve )
V2 V2 11 1

The following matrix A has full column rank. Find its pseudo-inverse.

11
02].

37

Sage '
A=matrix(QQ,[[1,1],[0,2],[3,7]])

print A.rank()

B=A.transpose() * A
Pseudo=B*-1*A transpose()
print Pseudo

A:

[ 4/7 -11/14 1/7]
[ -3/14 5/14 1/14]

4 -1 1
. F_ Taov14T7_ | 7 14 7
..A—(AA)A—_3iL [ |
14 14 14

For given vectors u =(2i,0,3i), v =(2—4,0, 1+3i), compute Euclidean

inner products u- v and v- u.
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62 — 851¢ 31 —55¢

9 13—611
S Let u= 661 , v=21—63i | be vectors in C° with Euclidean inner
200 +6 112
63+ 11: —71+9:

product defined. Compute the norms |lu || and |Iv ||, and d(u, v).

Find the eigenvalues of A= [?_;] and a basis for the eigenspace

associated with each eigenvalue.

Find any invertible matrix P diagonalizing a given matrix A4 which

has complex eigenvalues?

Sage !
A=matrix(QQ,[[6,-4],[8,-2]])
print A.eigenvalues()

print A.eigenvectors_right()

[2 - 4x1, 2 + 4*I][(2 - 41, [(1, 1 + 1*D], 1), (2 + 4xI, [(1, 1 - 1xD)], 1)].

P |
'P_[lﬂ'l—i] u

Find the conjugate transpose A of the following matrix A:

3+i —2i

11 6i

A= 3 1+
4 —1+54

Determine which matrices in the below are Hermitian.

(@) [347” 431'] (b) [22 2—?}
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11 -1 1
@] e
V2 V2 vz 2
0 i1 2 i 0
@ | i 0 2+ (f) lo 1 —5z]
-1 —2+i 0 11—i 4

11
= s o i 1

(a) A= \{5 \/? (b) A=| i 0 2+i
— ——= —1 =2+ 0
V22

T (V3+i) —=(1-iv3)

7 (14+4i+/3) Qﬁ(i—ﬁ)

Let v, =(2,0) and v,=(0,4) and suppose 7 :R*-— R? is a linear

transformation. If 7(v,)=v, and 7(v,) =v,, what is the standard matrix of

77 In addition, if 8= {v,, v,}. what is the matrix representation [7']; of T

relative to the ordered basis (37

Suppose the following polynomial p(\) is the characteristic polynomial
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of a square matrix A4.
p(N)=OA—=1)A=3)?(A—4)".
(1) What is the order of 47

(2) If the number of linear independent eigenvectors of A cannot exceed 3, is
the matrix 4 diagonalizable?

(3) What is the dimension of each eigenspace of A?
(4) Suppose A is diagonalizable. Discuss about a relationship between the

algebraic multiplicity of each eigenvalue A and the dimension of the solution

space to the homogeneous linear system (A/— A4)x=0.

(1) Suppose the following are the eigenvalues of a 33 symmetric matrix
A and their corresponding eigenvectors:
MN=—1,X=3 =7 v,=(0,1,—-1),v,=(1,0,0), v, =(0, 1, 1).
Find the matrix A.

(2) Determine if there exists a 3x3 matrix whose eigenvalues and their

corresponding eigenvectors are given in the below:

)\1 :717 )\2:37 A3:7 V1:(07 ]-7 71)7 VQZ(]-?O) 0)7 V3:(1? ]-7 ]-)
@ rrobiem Pa _ |12 61 '
roblem Show A4 = 6i 10 has non-real eigenvalues.

Show that if A€M, (C) is skew-Hermitian, then every eigenvalue of A4 is a
pure imaginary number.

Use properties (1) and (3) of inner product in Section 8.7 to

show that < cu,v>=c<u,v>.
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9.1 Axioms of a Vector Space

9.2 Inner product; *Fourier series
9.3 Isomorphism

9.4 Exercises

The operations used in vector addition and scalar
multiple are not limited to the theory but can be
applied to all areas in society. For example,
consider objects around you as vectors and make a
set of vectors, then create two proper operations
(vector addition and scalar multiple) from the

relations between

—

the objects. If these two operations satisfy the two basic laws and 8 operation

properties, the set becomes a mathematical vector space (or linear space). Thus

we can use all properties of a vector space and can analyze the set theoretically

and apply them to real problems.

In this chapter, we give a definition of a vector space and a general theory of a

vector space.
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~, Axioms of a Vector Space

| @ Ref site : http://youtu.be/m9ru—F7EVNg, http://youtu.be/beXWYXYtAal
o Lab site: http://matrix.skku.ac.kr/knou—knowls/cla—week—14—sec—9—1.html

The concept of vectors has been extended to n-tuples in R" from

the arrows in the 2-dimensional or 3-dimensional space. In Chapter

1, we defined the addition and the scalar multiple in the n

-dimensional space R". In this section, we extend the concept of

the n-dimensional space R" to an n-dimensional vector space.

Vector Spaces

Definition ~ [Vector space]

If a set V(# ¢) has two well-defined binary operations, vector
addition (A) ‘+’ and scalar multiplication (SM) ‘- ', and for any

X, ¥, 2EV and h, k ER , two basic laws

A x,yeV = x+yeET.
SM. x€V, kR = kxeV.

and the following eight laws hold, then we say that the set V' forms a
vector space over R with the given two operations, and we denote it
by (V, +,- ) (simply V if there is no confusion). Elements of V are
called vectors.

Al. x+y=y+x.
A2, x+y)t+tz=x+(y+2z).

A3. For any x €V, there exists a unique element 0 in ¥V such that

x+0=x.
A4. For each element x of V, there exists a unique —x such that
x+ (—x)=0.

SM1. k(x +y) = kx + ky.
SM2. (h + k)x = hx + kx.
SM3. (hk)x = h(kx)=k(hx).
SM4. 1x = x.
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The vector 0 satisfying A3 is called a zero vector, and the vector —x
satisfying A4 is called a negative vector of x.

In general, the two operations defining a vector space are important. Therefore,

it is better to write (V, +,- ) instead of just V.

For vectors x= (z, &y #3), ¥ = (y;, ys» y3) in R® and a scalar k €R , the

vector sum x +y and a scalar multiple kx by k €R are defined as

(1) x+y=(a;+ yp, 29+ Yo 23+ y3).
(2) kx = (kzy, kxy, kxy) .
The set (R? +,. ) together with the above operations forms a vector

space over the set R of real numbers.
[ |

For vectors in R"

T hn
T

x =7, y=|"
x?’[ yﬂ

and a scalar kR, the sum of two vectors x+y and the scalar
multiple of x by k is defined by

xy t, kx,

+
(1) x+y= xQ: & and (2) kx = k.m2
xn+y7l kxn,

The set R" form a vector space together with the above two operations.
[ |
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Theorem 9.1.1

LetV be a vector space. Let x€ V and £k €R . Then the following hold.

(1) ox = 0.

(2) k0= 0.

3) (—1)x=—x.

(4) kx =0 & k=0or x=0.

Zeo Vector Space

Definition

Let V= {0}. For a scalar k=R, if the addition and scalar multiple
are defined as
0+0=0, k0 =0, then

V' forms a vector space. This vector space is called a zero vector

space.

Let M

m Xn

be the set of all m Xn matrices with real entries. That is,

M, ., ={A=la;l,«,la;ER, 1< i< m, 1< j< n}.

When m =mn, we denote M, ., by M,

n-

It M

m Xn

is equipped with the matrix addition and the scalar

+,- ) over R.

multiplication, then A7, ., form a vector space (M,

m Xn?
Then the =zero vector is the zero matrix O and for each A=

la;] EM,, .. the negative vector is —A=[—aq;]. Note that each vector

ne

means an m Xn matrix with real entries. |
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Let € (R) be the set of all continuous functions from R to R. That is,
ER)={f1f :R- R is continuous}

Let f, g€ &(R) and a scalar k €R , define the addition and the scalar

multiple as

(f+g)(@)=fl)+g@), (kf) (@) =kf(z).
Then & (R) forms a vector space (6§ (R), +,- ) over R.

Now the zero vector is 0(z) = 0 and for each f& &(R), —f is defined

as (—f)x)=—f(z).

Vectors in & (R) mean continuous functions from R to R. [ |

Let P, be the set of all polynomials of degree at most n with real
coefficients. In other words,
P, = {a()+a1t+a2t2+-~~+ant"|a0, ay, ..., anE]R}

Let p(t)=ay+at+-+a,t", q¢lt)=b,+bt++bt"eP, and a scalar
k€ R . The addition and the scalar multiplication are defined as
p(t)+q(t) = (ay+by)+ (a, + b )t + - +(a, +b,)t",
kp(t) = (kay) + (kay )t + - + (ka, )t".

Then P, forms a vector space (P,, +,- ) over R. Now the zero vector

is 0(t) =04+0t+ - +0t" and each p(t) = P, has the negative vector
—p(t) defined as
—plt)=—ag—ajt— - —a,t".

Vectors in P, means polynomials of degree at most n with real

coefficients. |
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Subspace

Definition

Let V be a vector space and W(# ¢) be a subset of V. If W forms a
vector space with the operations defined in V, then W is called a

subspace of V.

If (V, +,- ) is a vector space, {0} and V itself are subspaces of V.
: [ |

e In fact, the only subspaces of R? are {0}, R? and lines passing through the

origin. (see section 3.4 ).

o In R?, only subspaces are (i) Null Spaces, (i) R?, (iii) lines passing through

origin and (iv) planes passing through origins.

50 50

Q How to determine a subspace? (the 2-step subspace test)

Theorem  9.1.2 [the 2—step subspace test]

Let a set (V, +,- ) be a vector space and W (# @) be a subset of V.
A necessary and sufficient condition for W to be a subspace of V is
(1) x, yeW = x+ ye W(closed under vector addition +)

2) xeW, keR = kx< W(closed under scalar multiple- )
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a, b, c, dEIR} is a subspace of the vector space

Oab]

Show that WZ{ cdo

(M2><3v +7 : )

Note that A,.; is a vector space under the matrix addition and the

scalar multiplication. Let

0 a bl} :[0 ay by
c; dy 0 Y ¢y dy 0

The following two conditions are satisfied.

| wken

_ 0 a1+a2 b1+b2
(1)X+y_[cl+02 di+dy, 0 EW

0 ka kbl]

(@) kx = o kd, o

Hence by Theorem 9.1.2, (W +, - ) is a subspace of (M., +,- ). A

The set of invertible matrices of order n is not a subspace of the vector

space M,.

One can make a non-invertible matrix by adding two invertible matrices.

For example,

o+ 2]

ool .

Let V be a vector space and S = {X;, Xy, ..., X,} € V. Show that the set
W={cx, +ex,+ - +exleney oo ¢ €ERY

is a subspace of V. Note that W=< §>, linear span of the set S.

Suppose that x,yE W, kR . Then for ¢, d,€R (i=1,2, ..,t),
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X=X T Xyt o tox, y=diX; T doXy + -+ +dx, .
Thus

x+y= (¢, +d)x;+ (g +dy)xy + - + (¢, +d,)x,,
kx = (ke )x, + (key)xy + -+ + (ke )x, .

x+tyeW, kxeWw

Therefore T is a subspace of V.

Linear independence and linear dependence

Definition  [Linear independence and linear dependence]

If a subset {Vl, Ve ..., V,} Of a vector space V satisfies the following

condition, it is called linearly independent.
vy + vy -+, v, =0 = c=cp==c,=0
and if the set is not linearly independent, it is called linearly

dependent. Hence being linearly independent means that there exist

some scalars Cly Cyr v s Cp not all Zero such that

vy vy +-t e, v, =0.
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Linear combination in 2-dimensional space - linear dependence

Remark . .
(computer simulation)

¢ http://www.geogebratube.org/student/m57551

HE Il M4y =S

[R][ALA B (O] [N fancl =2 [

23 el X ZE

o T
o= PN
157 E -0.69
A= vectorv =
284 278 113

vector ul vector u2

.e1=068,02=0.45

157 -301)_(-069
Dﬂ(zsq)'mﬁ(—xm)’( ns)

=10

01
00

—
o
(an)

[

. Since

00 10 01

[A—

10 00
et 8] e [03] = [08] £e

1Byt egBy tegEyy ey By = = == =c¢=0

00

—
(an)
o

= =

{E\1, By, By, By} is a linearly independent set of A1,.

2 0 0 —2
a linearly dependent set of A4,.

2 2

E The subset {1, z, 2 x”} of P, is linearly independent.

M Let {2—a+4 22+4a% 4—4x+2%} be a subset of P;. Then since
5 A—dzta’ =202-z+2")— (20 +2?),

the set is linearly dependent.
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Basis

Definition [basis and dimension]

If a subset a(# ¢) of a vector space V satisfies the following
conditions, a is a basis of V.

(1) span(a)= V.
(2) a is linearly independent.

In this case, the number of elements of the basis «, |al, is called the

dimension of V, denoted by dim(V).

Example 1 4

. [E=m - 10 01 00
The set in 1 0 consisting of F,, = [0 0] , Ey= {0 0] , By = [1 0] ,
00

Ey = [0 1} is a basis of AM,. Thus dim(M,,.,)=4. On the other hand,

the set in - {1, 2, 2% .., 2"} is a basis of P

n-

Thus

dim(P,)=n+1. These bases play a role similar to the standard basis of

R", hence M, and P, are called standard bases. |

w Show that a=1{1+x, — 141, 2°} is a basis of P,.

al+z)+b(—14+z2)+ecx’=0 & (a—b)+(a+b)z+cz’=0
e a—b=0,a+b=0,c=0

Since a=b=c¢=0, « is linearly independent.
Next, given A+ Bx+ Cx® € P,, the existence of a, b, ¢ such that
A+Br+ Cr® =a(l+z)+b(—1+z)+ ca’

is guaranteed since the coefficient matrix of the linear system
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a—b =4 1 —10|]|a A
a+b =B thatis, |1 10||b|=|B
c =C 0 01]le C
is invertible. Thus « spans P,. Hence « is a basis of P,. |

Linear independence of continuous function: Wronskian

Theorem 9.1.3 [Wronski's Test]

If f(z), fo(z), ..., f,(x) are n—1 times differentiable on the interval
(—o, ) and there exists z,E (-, o) such that Wronskian W(x,)

defined below is not zero, then these functions are linearly independent.

fl(ffo) fn(wo)

fll_(xo) fn,.(xo)

W(SU()): # 0

A7 () - 107V gy)

Conversely if W(z)=0 for every z in (—o,0), then f,..,f, are

linearly dependent.

L) show by Theorem 9.1.3 that f,(z)=1, fy(z)=e", fy(x)=€*" are linearly

independent.

1 e:r, 6290

For some (in fact, any) =, W(z)=|0 " 2¢%°| =2¢* # 0. Thus these
O 6:1: 462:1:

functions are linearly independent. O

http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

var('x')
W=wronskian(1l, e*x, e*2x*x)) # wronskian(fl(x), f2(x), £3(x))

print W
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2xe”(3*Xx) [ |

Let f,(z)==xz, f,(x)=sinz. Show that these functions are linearly

independent.

. x, sinx, i
Since  Wlz,) = = x,co8xy—sinz, # 0 for some =z, these
1 cosz
functions are linearly independent. |

T 5) Show that filz) ==z, f,(x)=3z are linearly dependent.

Since for any z, Wi(z)= =0, these functions are linearly

dependent. [ |

http://matrix.skku.ac.kr/kiosk/
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™ Inner product; *Fourier series

I
[ o ref movie: http://youtu.boe/m9ru—F7EvNg, http://youtu.be/nlkYF—uvFdA
@ demo site: http://matrix.skku.ac.kr/knou—knowls/cla—week—14—sec—9—2.html

In this section, we generalize the Euclidean inner product on R"
(dot product) to introduce the concepts of length, distance, and

orthogonality in a general vector space.

Inner product and inner product space

Definition  [Inner product and inner product space]

The inner product on a real vector space V is a function assigning a
pair of vectors u, v to a scalar <u, v> satisfying the following
conditions. (that is, the function < , > :V XV - R satisfies the

following conditions.)

(1
(2
(3
(4

) <u,v>=<v,u> for every u,vin V. f

) <utv,w>=<u,w>+<v,w> for every u,v,w in V.
) <cu,v>=c<u,v> for every u,v in ¥V and ¢ in R.
) <u,u>2 0; <u,u> =0 u=0 for every u in V.

The inner product space is a vector space V with an inner product
<u, v> defined on V.

The Euclidean inner product, that is, the dot product is an example of

an inner product on R". Let us ask how other inner products on R"are
possible. For this, consider A€M,(R). Let u and v be the column

vectors of R". Define <u,v> by <u,v> = v’Au. Then let us find the
condition on A4 so that this function becomes an inner product.

In order for <u, v>= v 4u to be an inner product, the four conditions
(1)~(4) should be satisfied. First consider conditions (2) and (3).

- 378 -


http://youtu.be/m9ru-F7EvNg
http://youtu.be/nIkYF-uvFdA
http://matrix.skku.ac.kr/knou-knowls/cla-week-14-sec-9-2.html

<utv, w> = wA{u+v)

= wlidu +widv = <u, w> + <v, w>,
<cu, v> =viA(cu) = evidu =c<u, v>.

Let us check when condition (1) holds. Since v’Au is a 1x1 matrix

(hence a real number), we have

(viAuw)” = vi4u

That is, to satisfy <u, v>=v/Adu= v"Au)’ =u’4v=uTdv=<v, u>

we have A= A7 in other words, 4 is a symmetric matrix.

Thus the function <u, v> = v’Au satisfy condition (1) if 4 is a

symmetric matrix.

Finally check condition (4). An nxXn symmetric matrix 4 should satisfy

u’4u>0 for any nonzero vector u. This condition means that A is
positive  definite. In other words, if A is positive definite,

<u, v> = v Au satisfies condition (4).

Therefore, to wrap up, if A is an nXn symmetric and positive definite
matrix, then <u, v> =v74Au defines an inner product on R"™. The well

known Euclidean inner product u- v =v’u =v’/u can be obtained as a

special case when 4 = I, (symmetric and positive definite). |

For any nonzero vector u, if the eigenvalues of A are positive, then u’4u > 0
(the converse also holds.)

32
24

Let Az[ “ Yl in R

] be a 2X2 symmetric matrix and u= , V=

Us )
Then

<u,v> = viAu = 3v,u, + 205u; + 20 uy + 4vyu,

satisfies conditions (1), (2), (3) of an inner product on R?. Now let us

show that A is a positive definite. Let w= [yx} Then
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<w, w> = w/Aw = 32> +4zy+4y® = (z+2y)* +22°. Thus w/Aw= 0 and
wiAdw =0 o z+2y=0=z & x=y=0.

Hence the symmetric matrix A is positive definite and defines an inner

product on R? of the form <u, v> = v’Au.

If u= [f] and v= LH then u- v =7. On the other hand,

<u,v>=[14] B Z] E’]: 51

Hence the inner product < u, v> =v’A4Au on R? is different from the

Euclidean inner product. [ |

Norm and angle

Definition [norm and angle]

Let V be a vector space with an inner product <u, v>. The norm (or
length) of a vector u with respect to the inner product is defined by

lull= vV<u,u>.

The angle 0 between two nonzero vectors u and v is defined by

<u, v>

0= 0 0< .
cost = T ¢ ™)

In particular, if two vectors u and v satisfy <u,v>=0, then they are
said to be orthogonal.

For example, the norm of u= [ﬂ with respect to the inner product given in
is

2 _ T 32”3]_
lul?=<u,u> =u’du=[3 1}[24 3=,
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Thus |lull= +v43. On the other hand, the norm u = [ﬂ with respect to the

Euclidean inner product is

lull = Vu- u = u’u = V10

(X, ¥ )

y @=arccos
! IxI Iyl

For any inner prodcut space, the triangle inequality [lu + vl < |lull+1v]l holds.

Using the Gram-Schmidt orthogonality process, we can make a basis

{vl, Vy ..., V,f of a inner product space V into an orthonormal basis

{up, uy s, b

Inner product on complex vector space

Definition

Let ¥V be a complex vector space. Let u, v, w be any vectors in VV and
¢ €C be any scalar. The function <, > from VXV to C is called an
inner product (or Hermitian inner product) if the following hold.

(1) <u, v>=<v,u>.

(2) <utv,w>=<u, w>+< vV, w>.

(3) <cu,v>=c<u, v>.

(4) <v,v>2 0, <v,v>=0 & v=0

A complex vector space with an inner product is called a complex inner product
space or a unitary space. If <u,v>=0 for any two nonzero vectors u, v, then

we say that u and v are orthogonal.
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Let V be a complex vector space. By the definition of an inner product on V,

we obtain the following properties.

(1) <0, v> =0= <v,0> .
(2) <u,vtw> = <u,v> + <u, w>.

B) <u,ev> =c<u,v>, cEC (v <u,ev> = (ev) Au=cv Au= c<u, v>).

Let u =(uy, uy, ..., u,) and v =(vy, vy, .., v,) be vectors in C". The
Euclidean inner product u- v =uv,u;+ vou,+--+uv,u, satisfies the

conditions (1)~(4) for the inner product. [ |

Let & ([a, b], C) be the set of continuous functions from the interval
la, b] to the complex set C. Let f(z), g(z) € & (la, b], C). If the addition
and scalar multiple of these functions are defined below, then

& (la, b], C) is a complex vector space with respect to these operations.
(fro)=flz)+g(z), (cf Nz)=cf(z), cEC.

In this case, a vector in & ([a, b], C) is of the form f (z)=f,(z)+if,(z)
and f,(z), f,(xz) are continuous functions from [a, b] to R . For f(z),

g(z) e & ([a, b], C), define the following inner product
b
< flz), g(x)>=/ g(z)f(z) dz.

Then & ([a, b], C) is a complex inner product space.

We leave readers to check conditions (1)~(3) for an inner product, and

show condition (4) here. Note
< 16), 1) >= [ i) de= [ 156 Pao

and |f(z)]* 2 0, hence < f(z), f(z)>2 0. In particular,
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< 1) 1) > = [1@ =0 = 1f@)I*=0

That is, f(z)=0(a< z < b), conversely, if f is a zero function, then it is
easy to see that < f(z), f(z) >=0. [ |

Complex inner product space, norm, distance

Definition [Norm, and distance]

Let ¥V be a complex inner product space. The norm of u and the

distance between u and v are defined as follows:
1
lull =<u,u>?, du, v)=llu—vl.

m Find the Euclidean inner product and the distance of vectors
u= (24,0, 1+3i), v=(2—14, 0, 1+ 34).

u v

(2—4) (2i)+0- 0+(1+3i)(1+34)
=(2+4+4)(2)+0+(1—3i)(1+3i)
=4i+2i> +1—9i’=8 +4i.

d(u, v)=Illu=vll

=12i— =) +10—02+1(1+3i)— (1+3i)]
=VI-2+3il’+0+0

— ViTo= Vi3, o

.5 From , we let [a, b]=1[0, 7] and f(z)=e""". Find the norm of

fz).
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1 .
Ifll=<f @), f(z)> (/ eedx)
0

e L o L

| =

Cauchy-Schwarz inequdlity and the triangle inequality

Theorem 9.2.1

Let ¥V be a complex inner product space. For any u,v in ¥V, the
following hold.

() I<ua, v>1 < llullllvll .

(Cauchy-Schwarz inequality)
(2) lu+vll < llull +1vIl .

(triangle inequality)

We prove (1) only and leave the proof of (2) as an exercise.

If u=0, |<u,v>|=0=1lull lvll. Hence (1) holds. Let u# 0 and

. <v, u>
p=Dproj.,-v, w=v—p. Then <w,p>=0 and p=————

TE u. Thus we have
u

the following.

P
v
W=V—D
o p:tu:projuv' S u Q

0 <w, w>=<w, v—p>=<w, v>—< W, p>

=<w, v>=<v—p, v>=<v, v>—<p, V>

<v, u>
=lvl’—t<u, v>=lvl?—-—"2—"

<u, v>.
lull?

Thus, as lvI?lull?> <u, v><u, v>=|<u, v>|% (1) holds. M
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Example 9

Let u=1+4,0,2—4), v=(2,3i,i) be vectors in C? Answer the
following.

(1) Compute the Euclidean inner product < u, v>, llull,|lvll, lu+vll.
(2) Show that u and v are linearly independent.

1) <u,v>=2)0+i)+0+( )2—i)=2+2i—2i+i*=1
lull= Vi+iP+rl2—iP=v2+5= T
Ivll= V2P +13i E+1i P= Va+9+1= /14
lutvil =113+, 3, 2)l= VI3+i > +13i 2+ ]2
= V3 +1°+3°+2? = /23

(2) If au+pBv =0 for any scalar a, 8 € C, then
a(l+4, 0, 2—4)+6(2, 34, i)= (0, 0, 0)
= (@+28)+ai=0, 36i=0, 2a+ (B— )i =0.

So a=0, 8=0. Thus u and v are linearly independent. |

Let u=(1+4,0,2—i), v=1(2,3i,i) be vectors in (% Check that the
Cauchy-Schwarz inequality and the triangle inequality hold.

Since |<u,v>I=1 and |lullllvll=+98 >1, the Cauchy-Schwarz
inequality holds.

Also since |lu+vll=+v23 < V7+ V14=|ull+]lvll, the triangle inequality
holds. u

[Cauchy-Schwarz inequality in ¢" and & ([a, b], O)]

(1) Let C" be a complex inner product space with the Euclidean inner
product. Let u=(ay, ..., a,), v=_(b;, ..., b,) be in C". Then
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1
l<u, v> = | Yab| < (EIa,»IQ) (EIbilz) = |lull [lvl]
i=1 i=1 i=1
Hence the Cauchy-Schwarz inequality holds. |

(2) Let u= f(z), v=g)e &(a, b], C). As in , since the inner

product is given by
1 1
b ) b} b ) b}
< | [ rerar || [ g

the Cauchy-Schwarz inequality holds. |

|<u,v>|= ‘/\bmf(l')dl'

= llullllvll

. [triangle inequality] Consider the inner products given in w and

(1) Let u=1(ay, ..., a,), v=_(by, ..., b,)E C". Then the triangle inequality
holds. That is,
1 1

i (ilaiIQ)ng(_ilbiF)?

i=1 i=1

lu+vl :(Zaﬁbm

i=1

= [[ull + lIv]l. [ |

(2) Let u=f(z), v=yg(z)e &E(a, b], C). Then the triangle inequality
holds. That is,

1

lutvl = (/blf(x) +g(z)Pdx )E

f: £ (o) da )i (fb l9(e)|%de )%

=llull + llvll. [

<
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, Isomorphism
I
[ | e Reference site: http://youtu.be/frOcceYb2fc, http://youtu.be/Y2IhCIDOXS8

e Lab site: http://matrix.skku.ac.kr/knou—knowls/cla—week—14—sec—9—3.html

We generalize the definition of a linear transformation on R”" to a

general vector space V. A special attention will be given to both

injective and surjective linear transformations.

Definition

Let ¥V and W be vector spaces over R. 7: V - W be a map from a
vector space V to a vector space W. If T satisfies the following

conditions, it is called a linear transformation.

(1) T(cu)=¢T(u) for every u in V and ¢ in R.
(2) T(u+v)=T@W)+ T(v) for every u, v in V.

If V= W, then the linear transformation 7 is called a linear operator.

Theorem 9.3.1

If 7:V - W is a linear transformation, Then we have the following:

(1) 7(0)=0.
(2) T(—u)=— T(u).
) T(u—v)=T)— T(v).

N

VIf 7:V - W satisfies that 7(v)=0 for any vE V, then it is a linear
transformation, called the =zero transformation. Also, if 7 :V - V
satisfies that 7(v)=v for any v €V, then it is a linear transformation,

called the identity operator. |
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=@

Kernel

Define 7 : V-V by T(v)=kv (k a scalar). Then 7 is a linear
transformation. The following two properties hold.

(1) 7T(cn) = k(cu) = c(ku) = ¢T(1)
(2) Tlu+v)=klu+v)=kut+kv=7T()+ T(v)

If 0<k<1, then 7T is called a contraction and if k> 1, then it is
called a dilation. [ |

Let £(R) be the vector space of all continuous functions from R to R
and V be the subspace of &(R) consisting of differentiable functions.
Define D : V - V by D(f )=f'. Then D is a linear transformation and
called a derivative operator. |

Let ¥V the subspace of &(R) consisting of differentiable functions.
Define J:V - W by J(f) :/ f(t)dt. Then J is linear
0

transformation. [ |

and Range

Definiton ~ [Kernel and Range]

Let T : V - WW. Define

ker7={veV|Tv)=0}, Im7T ={Tv)e Wlve '}

ker T is called the kernel and Im 7 the range.

If 7 :V - W is the zero transformation, ker7=V and Im7={0}. W
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If 7 :V - V is the identity operator, ker 7= {0} and Im7= V. [ ]

Let D be the derivative operator defined by D(f)=f" as in

kerD is “the set of all constant functions defined on (— e, ©)” and Im7T
is “the set of all continuous functions, that is, Cont(—o0, 0)”.
|

Basic properties of kernel and range

Theorem 9.3.2

If 7T:V - W is a linear transformation, ker7 and Im7 are subspaces
of ¥V and W, respectively.

Theorem 9.3.3

If T:V - W is a linear transformation, the following statements are

equivalent.

(1) T is an injective (or one-to-one) function.
(2) kerT={0}.

Isomorphism

Definition
If a linear transformation 7" : V - W is one-to-one and onto, then it

is called an isomorphism. In this case, we say that V is isomorphic to
W, denoted by V= W .
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Theorem 9.3.4

Any n-dimensional real vector space is isomorphic to R".

Any n-dimensional real vector space (defined over the real set R) is isomorphic
to R"™ and any n-dimensional complex vector space (defined over the complex

set (C) is isomorphic to C".

We immediately obtain the following result from the above theorem.
P”71 ]Rn,, M = IRan .

mXn

IR

1CME-12

12th International Congress on
Mathematical Education

http://icme12.org

[the 12th International Congress on Mathematical Education]
http://www.icmel2.org/
http://matrix.skku.ac.kr/2012-Album/ICME-HPM.html
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Chapter 9

e http://matrix.skku.ac.kr/LA-Lab/index.htm

e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

When we define the addition and the scalar multiple on R? and M, as

follows. Check if R? and M, are vector spaces.
(1) (ay, ay)+ (b, by)=(a; +by,as+by), klay, ay)=1(a;, 0).

(2) (ay, ay )+ (by, by) = (a; — by, ay — by),  klay, ay) = (kay, kay).
5 ay ay n byby|  |ay +by ayby % ayay|  |kay ka,
) as ay byby| | azby a, +b,]° asay|  |kaykay|

n b, b2_ a; +b; ay+by ka1a2_ ka, ka,
by by|  |ag+by a,+b,|" agay| |kagkay|”

ap Qo

(4) {

as ay

(L) Which one is a subspace of M,?
ol ]
o[
@[

@[]

aE]R}.

a, bE]R}.

a+d=0}.

a—l—d:l}.

roblem et plt)= e a vector in . Write p(t) as a linear
(O Let p(t)=22+3t+1 b tor in P,. Write p(t) li
combination of p, (t) =1t +t—1, p,(t) =t +t+1, py (t)=1>+2t+4.

Let 262 +3t+1=c,(* +t—1)+c, (P +t+1)+c; (P +2t+4)
=(cl+02+c3)t2+(cl+cz+2c3)t+(—cl+62+403), ¢y e csE R
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cpteygt+2c3=3 = ¢ =2,c="1,c5=1

cptegtey =2
=>
—cteytde; =1

Therefore p(t) = 2p, (t) —py(t)+ p;(t). ]

Determine if the below vectors in a given vector space are linearly
independent or linearly dependent.

(1) R? :x, = (12, —12,43, 1), x, = (0,12, —3, —2), x; =12, —12, 5, 0),
x,=(-2,3,1,4).

@ ot = [ 3= [ TGl 5 )

(B) Py p, ()= +4t> —2t+3, p,(t)=1t>+6>—t+4,
ps () =3t> +8t> —8t+7.

Let C* be the complex inner product space with the Euclidean inner

product. Let u = (4, 4,4), v= (i, —4, i). Answer the following.
(1) Compute < u, v>.

(2) Compute [lull, Ivl, llu +vI|.

(3) Confirm the Cauchy-Schwarz inequality.

(4) Confirm the triangle inequality.

_ i
(1) <uv>=viu=[—ii—] [ilZ(—i)i+i><i+(—i)i:1
i

2) Tull=V0il2+il2+ lil*= Vi+t1+1= V3
Ivil=+1il2+ =i+ il2= Vit1+1= V3
lu+vl=1(24,02) 01 =V|2i|240+ |2i|*= Va+0+4=22

3) <u,vo=1 lull Ivl=3implies |[<u,vy| < I ull vl

@ lull=3,Ivll=3lu+tvli=2v2 => 2v/2< 3+3
Triangle inequality lu+v Il < llull + Il vI holds. [ |
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Define an inner product on R? as <u, v>= 6w v — 2uyv; — 2u Uy + 3Uyvy.
Compute the following. (here u =< uy, uy >, v = (v;, vy))

(1) The 22 symmetric matrix 4 such that < u, v>=v’Au
(2) The norm |l of u=(1, —1).
(3) The norm ||vl| of v =(4, 3).

(4) 6 such that s> cosf.
llull vl

(1) Let A= {CCLZ] and <u,v)=6u;v; — 2uyv; — 2u vy + 3uyv,.
ab

=> {u,vy=v Au= [v, v,] [cd

Uy
[u ] = av;uq + bvjuy + cvgug + doguy.
2

6 —2}
-2 3

(2) and (3) lull = V<uuy = \/[1—1] :_62_32] [_11] .
Ivi = Vvvy = \/[4 3][_62_32] [g ~ V75

La=6,b=—2,c=—2,d=3, A:[

6 —21[ 1
fall vl ﬁx Vards) 5421
o, 17
=>  f= L~ 42.103° [ |
COS 5 21

Tell which one is a linear transformation or not. If not, give a reason.
(D) 7 : Py~ Py, Tlp(x)) =ap(z).

(2) T : M, - M, T(A)=A4".
@7 :Elabl-R, T¢ @)= [ @) d.

4 17 : M- R, T(4)=tr(4).
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© 7:v- R, T(x)=Ixl.

Find the kernel and the range of the following linear transformations.

() T Py — Py, T(p(x))zzp(m).
@ 7T El0,1] - R T (x))Z/Olf(a;)da:.

m If W, W, are subspaces of a vector space V, prove that W, n W, is a
subspace of V.

Let a be a fixed vector and W be the set of all vectors orthogonal to a,
that is, W = {xE=R*|la- x=0}. Show that W is a subspace of R?.

Let C® be the vector space with the Euclidean inner product.
Transform u, = (i, 4, 4), uy, = (0,4,4), u3 =(0,0,4) into an orthonormal

basis by using the Gram-Schmidt process.

Find the standard matrix corresponding to the given linear
transformation 7' : M, — M, defined by

Ayy Qo
T( _
Qg1 A

Define 7 : M,(R)— M,(R) by T(A)=A+A”. Show that it is a linear
transformation and find the kernel and the range of 7.

2a9, ay +agy

a9 = 2091 Gy
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10.1 Finding the Jordan Canonical Form with a Dot Diagram
*10.2 Jordan Canonical Form and Generalized Eigenvectors
10.3 Jordan Canonical Form and CAS

10.4 Exercises

If a matrix is diagonalizable, every thing is much easier. But most of matrices are not
diagonalizable. The Jordan canonical form is an upper triangular matrix of a particular form
called a Jordan matrix (a simple block diagonal matrix)
representing an operator with respect to some basis. The
diagonal entries of the normal form are the eigenvalues of the
operator, with the number of times each one occurs given by
its algebraic multiplicity.

Any square matrix has a Jordan normal form if the field of
coefficients is extended to one containing all the eigenvalues of
the matrix. Since each matrix has a corresponding Jordan
canonical form which is similar to it, all computations can be
done with this simple upper triangular matrix. The Jordan
normal form is named after Camille Jordan, a French

mathematician renowned for his work in various branches of
mathematics. In this chapter, we will study how to find a Jordan matrix which is similar to
any given matrix and how to find generalized eigenvectors.
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\ Finding the Jordan Canonical Form with a Dot Diagram

\
[ | e Reference video: http://youtu.be/NBLZPcWRHYI, http://youtu.be/NBLZPCWRHYI
e Practice site: http://matrix.skku.ac.kr/lknou—knowls/cla—week—15—sec—10—1.html
http://matrix.skku.ac.kr/JCF/

If a given matrix is diagonalizable, most computational problems
involving that matrix and desired conclusions can be easily

obtained. However, not every matrix is diagonalizable. In this

section, we will introduce a method for finding the Jordan

Canonical Form of a non-diagonzaliable matrix by a similarity

transformation.

Let us review a few concepts of matrix diagonalization.

Diagonalization of a Square Matrix (Review)

1. Let 4 be an nXxn matrix. Then, A is diagonalizable if and only if it has n
linearly independent eigenvectors. However not all matrices are diagonalizable.

2. A normal matrix A (44 = A"A) is unitarily diagonalizable (that is, unitarily
similar to a diagonal matrix). However, not all diagonalizable matrices are
normal.

3. If a matrix A is diagonalizable, each eigenvalue of A4 generates an
eigenspace with dimension equal to the algebraic multiplicity of that

eigenvalue.

For every square matrix A4 (not necessarily diagonalizable), one can obtain a
block-diagonal matrix called the Jordan canonical form matrix that is similar to
A.

6 3 —8
For example, the matrices [(1) (1)] and |0 —2 OJ are non diagonalizable.
1 0 -3
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The set of all n x 7 matrices

Diagonalizable matrix case Non-diagonalizable matrix case
P -1 D D) P x T]_')
\5 i \lr L
' % Diagonal ) ;
Invertible matrix matrix Unitary matrix
k4

Unitarily diagonalizable

PCDP
‘r |, Diagonal

matrix

Upper triangular matrix

Unitary matrix

Orthogonally diagonalizable J’_‘ P ]l)
o . -

r Pl D D Invertible matrix

% ) § ]

Orthogonal Diagonal
matrix - matrix

Jordan Canonical Form

Theorem 10.1.1

Let A be an nxXmn matrix with ¢ (1 < ¢t < n) linearly independent

eigenvectors. Then, A4 is similar to a matrix

nxXn

where U AU= J4 for some unitary matrix U . Furthermore, we have

Al 0
Jp = 1 , (ny+ny++n, =n, 1< k< t)
0 Ai

ngXn,

where each J,, called a Jordan block, corresponds to an eigenvalue \; of
A. The block diagonal matrix J, is called the Jordan canonical form of A

and each J, are called Jordan blocks of J,.

o The Jordan Canonical Form (JCF) of a matrix 4 is a block diagonal matrix
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composed of Jordan blocks, each with eigenvalues of A on its respective
diagonal, 1's on its superdiagonal, and 0's elsewhere.

Remark Properties of Jordan blocks

1. For a given eigenvalue A, of an nXxXn matrix A, its geometric multiplicity is
the number of linearly independent eigenvectors associated with A;: hence,

it is the number of Jordan blocks corresponding to A,.

2. The sum of the sizes (i.e. orders) of all Jordan blocks corresponding to an
eigenvalue ), is its algebraic multiplicity.

3. If the geometric multiplicity and algebraic multiplicity of every eigenvalue of

A are equal, then the size of every Jordan block is 1x1, and

sum of algebraic multiplicities = sum of geometric multiplicities = size of A

In this case, the matrix A is diagonalizable. (This type of matrix is called a

simple matrix.)

The matrix J,

o

Il
o c o o ol ©
o oo o o|lo -
o O O © Ol = O
c o o clh|le o o
o oleo wle o o o
O O |lw = I O o O
o ol oo io o o
o —lo oo oo o

has characteristic polynomial det(4—XI)=(\A—2)"(A—3)’)\* and is the
Jordan Form of some 8 X 8 square matrix A .

Notice how the algebraic multiplicities of each eigenvalue determines the
number of times that eigenvalue appears along the principal diagonal of

Jy 2 appears four times, while 3 and 0 appear two times. Hence the

algebraic multiplicity of 2 is 4.
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You can easily verify that the sum of the sizes of all Jordan blocks
corresponding to a single eigenvalue is also equal to its algebraic
multiplicity.

Also, note that the geometric multiplicities of each eigenvalue determine

the number of Jordan blocks corresponding to that eigenvalue.

Thus geometric multiplicities of 2, 3 and 0 are 2, 1, and 1 respectively.ll

For a 5 X5 square matrix A4, if A has only one eigenvalue A\ with one
associated linearly independent eigenvector, the Jordan form of A4 is the
following:

A1000
0AN100
Jy=100X10
000AT1
0000

This is due to the fact that the number of linearly independent
eigenvectors of A determines the number of Jordan blocks in the Jordan

form of A. Thus in this case the geometric multiplicity of the eigenvalue

5 is 1 where as algebraic multiplicity is 5. [ |

How to find the Jordan Canonical Form

Suppose for some matrix A€ M, with k distinct eigenvalues A, Ay, ..., A;, the

Jordan canonical form of A4, J,, is the following:

Al 0 - 0

A :

7 =04 :
0 0 Ak

Here, each A, corresponds to a Jordan block with the eigenvector A, along its
diagonal. These are called block submatrices of J,. Now, for each eigenvalue

A;, we have a block submatrix
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and, knowing its structure, we can easily find the Jordan Canonical Form .J,.
The Jordan form is uniquely determined up to the order of the blocks; that is,
the number and size of the Jordan blocks associated with each eigenvalue is
uniquely determined, but the blocks can appear in any order along the main
diagonal.

For each eigenvalue X\, (i=1,2, ..., k), A, consists of [,(1 < i < k) Jordan blocks:
let us find the size of each J;, €M, . namely p, (1< t< 1,). For the set of linearly
independent eigenvectors x;, X,, ..., X, corresponding to J;, for ease of notation,

let us first consider only one eigenvalue. Therefore, we let A\, be A and [, be [.

The number of Jordan blocks in A4;, I, and their corresponding sizes
P1> Doy ..., p; 1S determined by calculating the rank of A—A7. Without loss of
generality, we take p; 2 p, 2 -2 p,. Now, for the eigenvalue A and the

dimension of its corresponding \-eigenspace (its geometric multiplicity), using |

and p,, we introduce a sequence of points to easily calculate A4;; this is called

the dot diagram. The dots in the dot diagram are configured according to the
following rules:

* Dot Diagram Properties

1. The dot diagram consists of | columns.

2. Counting from left to right, the jth column consists of the k; dots that

correspond to the eigenvectors of z;, starting with the initial vector at the

j

top and continuing down to the end vector.

Thus, the following is the dot diagram of A4;:

e (A—AD" "(x) e A=AD" T(xy) o e (A—AD"'(x)

2

e (A—AD" P(x,) o (A—AD" *(xy)

.Xl
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« (A-2D)(x,) .x,

.Xl

Here, x,, x,, ..., x; are the linearly independent eigenvectors associated to the
eigenvalue \;. Let r; denote t the number of dots in the jth row of the dot
diagram; then, r, is the number of Jordan blocks of size at /east 11, r, is the
number of Jordan blocks of size at least 2<2, and r, is the number of Jordan
blocks of size at least p; xp, . Thus, r 2 r, 2 -+ 2 r,. Refer to Theorem 10.1.2

and 10.1.3, and consider the example below.

For a 9x9 matrix A,, the number of Jordan blocks contained in A4, is I

and the size of the Jordan blocks is completely determined by
Di> Pys ..., p;. 1o see this, take =4 and p,=3,p,=3,p3=2,p,=1.

Then, following the sequence of block sizes,

7, 1 0]0 0 0 0 0 0
0 %4 1/0 0 0 0 0 0
0 0 4|0 0 0 0 0 0
0 0 0[4 1 o]0 0 0
4=[0 0 0ol0 4 1|0 0 0
0 0 0[0 0 4|0 0 0
00 0 0 0 0[4 10
00 0 0 0 0[0 20
(00 0 0 0 0 0 0|4

is uniquely determined.
To find the dot diagram of A,;, since [=4,p, =3, p,=3, ps=2 and
ps =1, the dot diagram of is:

) (Number of Jordan blocks: 4)
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Theorem 10.1.2

The number of dots in the first » rows of the dot diagram for A; is
equal to the dimension of solution space of (4A—\,7)"x =0 (ie. the

nullity of (4A—X,7)").

nullity(4— X, 7)" = nullity(J, — X, 7)"

Theorem 10.1.3

For AEMH(C’), let T denote the number of dots in the jth row of the

dot diagram of A,. Then, the following are true.

(1) r, =n—rank(4— X\, T) .

2)If j>1, r;= rank (A—X\7)" ") — rank((4— X, I)7).

By Theorem 10.1.2,
7y + 7yt +r; =nullity ((A—X\7))=n—rank((4—\7)’) (provided j2 1)

Also, r, =n—rank (4 —\7) and
T, = (r, 41y —I—---—l-r]-)— (r)+ 1y tee L »)
=[n—rank((4—X7))]—[n—rank((4—X\7)"")]
=rank((4A—\7) ') —rank((4—XN1)7), j > 1.
(The number of dots in each row, r;, means the number of blocks of size

at least j x<j) [ |

From Theorem 10.1.3, let's see how the dot diagram for each ); is completely

determined by the matrix A4.

Find the Jordan Canonical Form of A.

2 -1 01 2 -1 01 2 -1 01
~lo0 3-10/, |0 3-10/,_|0 3-10
A_0110A_0110A_0110

0—-1 0 3 0—-1 03 0—-1 03
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A=matrix(4, 4, [2, -1, 0, 1, 0, 3, -1, 0, 0, 1, 1, O, O, -1, 0O, 3]
print A.charpoly().factor()

print A.eigenvalues()

(x - 3) * (x - 2)*3
(3, 2, 2, 2]

The matrix A has characteristic polynomial det(4—X)=\—3)(A—2)3,
so A has two distinct eigenvalues A;, A,.

Here A, =3 has algebraic multiplicity 1, and X, =2 has algebraic

multiplicity 3. Thus, the dot diagram for A, has 1 dot

and A4, has one 1x1 Jordan block. That is, A; =[3]. As well, the dot

diagram for A, has 3 dots, and

E=identity_matrix(4)
print (A-2+E).rank()
print ((A-2*E)*2).rank()

0—-1 01

o o — 4 0 1-10|_, ._
ry =4—rank(4—27)=4 rank| o 1 ol =4-2=2,

0—1 01
ry =rank(4 —27)—rank [(4—27)*]=2—1=1.

Thus, the dot diagram for X\, is the following.

Tp=2 1 e ¢ (number of Jordan blocks: 2)

T-Z:]_:.

A, has one 2x2 Jordan block and one 1x1 Jordan block. That is,
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Ay =

O O N
O N =
N OO
—

Hence, the Jordan Canonical form of 4 is

_ |4, 0] _
JA—[O Az]_

OO O W

O o N O

oSN = O

NO OO
[

http://sage.skku.edu and http://mathlab.knou.ac.kr:8080/

A=matrix(4, 4, [2, -1, 0, 1, 0, 3, -1, 0, 0, 1, 1, 0, O, -1, 0, 3]
J=Ajordan_form() # Jordan Canonical Form
print J

(3]0 010]
[~+-=+-]
(012 1]0]
[0]0 210]
[~+-=+-]

[0]0 012] |

Find the Jordan Canonical Form of A.

2 -2 -2 =2
_|—4 0 —2 —6
A= 2 1 3 3
2 3 3 7

The matrix 4 has characteristic polynomial det(4—X/) =(\A—2)> (A—4)2,
so there are two distinct eigenvalues of A, A\ =49} )\, =2, each with
algebraic multiplicity 2. For A\, =4,

rp=4—rank(4—47)=4—-3=1

Therefore, the dot diagram for ), is the following.
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ri=17: - (Number of Jordan blocks: 1)

7'2:1 :

So, A, = {4 1].

0 4

For A\, =2, r, =4—rank(4—27)=4—-2=2. r, is 0("~ The number of dots
is 2=2-+(0)). Therefore, the dot diagram for ), is the following:

ry=2 : =+ + (Number of Jordan blocks = 2)

120
So, A, = {0 2]
4100
. . _10400
Thus, the Jordan Canonical Form of 4 is J, = 0020 U]
000 2

http://sage.skku.edu and http://mathlab.knou.ac.kr:8080/

A=matrix(4, 4, [2, -2, -2, -2, -4, 0, -2, -6, 2, 1, 3, 3, 2, 3, 3, 7])
J=Ajordan_form() # Jordan Canonical Form
print J

[4 1/0[0]
[0 4]010]
[-—4=+-]
[0 012/0]
[~-4-+-]

[0 01012] |

[Remark] Jordan Canonical Form Learning Materials

e http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1.html
e http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1-ex.html

http://matrix.skku.ac.kr/JCF/index.htm
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Jordan Canonical Form and
Generalized Eigenvectors

[ | o Reference video: http://www.youtube.com/watch?v=yJ7n0icjtNA
@ Practice site: http://matrix.skku.ac.kr/knou—knowls/cla—week—15—sec—10—2.html
http://matrix.skku.ac.kr/sglee/03—Note/GeneralizedEV—f. pdf
http://matrix.skku.ac.kr/MT—04/chp8/3p.html

In Section 10.1, for any nXn matrix A, we discussed the theory

and method for finding a matrix J4, called the Jordan Canonical

form, such that PilAPZJA. In this section, we will examine a

method for finding the matrix P in the above equation. This

method utilizes the concept of generalized eigenvectors.

The following matrix was referred from the wiki

http://en.wikipedia.org/wiki/Jordan_normal_form.

Consider the matrix 4. The Jordan normal form is obtained by some similarity
transformation P~ 'AP=J,, i.e. AP= PJ,.

Let P have column vectors p;, 1 =1, ..., 4, then
1000
A[Di: Dy Dy Py =[pi: Py Dy D] 8%22 =[P 2p, ¢ 4Py i py+op,
000 4
We see that
(4 —1])p1 =0
(A 2])P2_0
(A—41)p;=0
(A—41)p, = ps.

For i =1,2,3, we have p,EKer(A—\I), ie. p,is an eigenvector of 4
corresponding to the eigenvalue );. For i =4, multiplying both sides by (4 —417)
gives (A4—47)p, = (A—41)p;. But (A4—47)p;,=0, so (A4—47)’p, =0. Thus,
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p,EKer(4—N1 )2. Vectors like p, are called generalized eigenvectors of A. Thus,

given an eigenvalue )\, its corresponding Jordan block gives rise to a Jordan chain.
The generator, or lead vector (say, p,) of the chain is a generalized eigenvector

such that (4—\7)"p, =0, where r is the size of the Jordan block. The vector
p,=(A-AI)""p

preimage of p,_; under A—XJ7. So the lead vector generates the chain via

is an eigenvector corresponding to A. In general, p, is the

r

multiplication by A —A7. Therefore, the statement that every square matrix A can
be put in Jordan normal form is equivalent to the claim that there exists a basis
consisting only of eigenvectors and generalized eigenvectors of A.

PS: More details about the Jordan Canonical Form can be found at
http.//www.uio.no/studier/emner/matnat/math/MAT2440/v11/undervisningsmateriale/genvectors.pdf.
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~, Jordan Canonical Form and CAS

[ e Reference video: http://youtu.be/LXYBRCNTEEO, http://youtu.be/LXY6RcNTEEO
@ Practice site: hitp://matrix.skku.ac.kr/knou—knowls/cla—week—15—sec—10—3.html

In practice, in order to find the Jordan Canonical Form of a 10X10

matrix, you need to find the roots of a characteristic polynomial of
degree 10 - the factorization and rigorous calculation of these

roots is impossible. Moreover, a 10X 10 matrix requires us to

calculate many exponents and coefficients. In order to calculate

these  coefficients, the Gaussian elimination and related
computations can be performed by various computer programs -
e.g. HLINPRAC, MATHEMATICA, MATLAB, and the recently
developed open-source program, Sage. The use of software for
computationally complex mathematics is necessary in an
increasingly technological society.

The following links provide more information about the Jordan Canonical Form and
tools that allow you to explicitly find the Jordan Canoncial Form for a given matrix
without arduous calculations by hand.

1. Theory and tools : http://matrix.skku.ac.kr/JCF/index.htm

2. Jordan Canonical Form; an dalgorithmic approach:
http://matrix.skku.ac . kr/JCF/JCF—algorithm_html

3. Jordan Canonical Form (step by step) tool:
http://matrix.skku.ac.kr/JCF/JordanCanonicalForm—SKKU html

4_CAS Tool : http://matrix.skku.ac.kr/2014—Album/MC—-2_html

"The man ignorant of mathematics will be increasingly
limited in his grasp of the main forces of civilization."
- John George Kemeny (1926 -1992)

A Jewish-Hungarian American mathematician, computer scientist, and educator
best known for co-developing the BASIC programming language in 1964 and

pioneered the use of computers in college education.
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hapter 10

e http://matrix.skku.ac.kr/LA-Lab/index.htm
e http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm

(SR Let A4 be a 5x5 matrix with the only one eigenvalue A with algebraic
multiplicity of 5. Find all possible types of Jordan Canonical forms of A
when the number of linearly independent eigenvectors corresponding A is 2.

For the given Jordan Canonical form .J,, calculate the following:

N

Il
OO OO
SO O >
OO = O
O = OO
> = 0O OO

(1) J,— M
(2) (Jy —AD?
3) (Jy—AD?

4 (J, =AD"

[Problem 3 - 8] Find the Jordan Canonical Form of the given matrix.

Ut Ot Ot Ut Ot
2 B2 W2 S
(2 B2 W2 B
Ut Ot Ot Ut Ot
Ut Ot Ot Ut Ut

Sage

A=matrix(QQ,5,5,[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5])
J=A.jordan_form()
print J
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[25] O] Of O] 0]
[ Ol Ol O Of 0]
[ Ol O O] Of O]
[ Ol O Of Ol 0]
[ Ol O Of O 0]

20
01
QGEZD o5
00
00

— =0 U
WO W W

5—3—2
854

0 —3 1 2
2o
-2 —3 1 4

13
01
QEED 00
00
00

2—4 2 2
2013
—-2—-637

Sage © ___
A=matrix(QQ,[[2,-4,2,2],[-2,0,1,3],[-2,-2,3,3].[-2,-6,3.,71])
print A.eigenvalues()
E=identity _matrix(4);
print (A-2*E).rank(); print (A-4*E).rank();print ((A-4*E)*2).rank()

- 410 -



2
3
2
rank(A4 —47)=3 => r, = n—rank(4—4/)=4—3=1.

r,=1: - (Number of Jordan block : 1)
ry = 1:
rank(4—27)=2 => r, = n— rank(4—27)=4—2=2.

ry =2: - - (Number of Jordan block : 2)
4100
0400

“Ji=10 020 -

000 2

(® means the matrix direct sum of m matrices constructs a block
diagonal matrix, http://mathworld.wolfram.com/MatrixDirectSum.html, from a set of

square matrices.)

3011 0000 0 0 0]

1300 0000 0 0 0

0031 0000 0 0 0 3211 0-3 1]

0003 0000 0 0 0 5011 ~1200 1-1 1

0000 3211 0-3 1 800 1130-6 5—1

0000-1200 1—1 1| =|,045 [|e | 0214 1-3 1

0000 1130—6 5-1 0000 3 0 0

0000 0214 1-3 1 0003 0000—2 5 0

0000 0000 3 0 0 0000—2 0 5

0000 0000—2 5 0

10000 0000—2 0 5]
0-3 12 L3704 3 2-422
—2 1 -1 2 01 238 2 —2 013

A= ® (00 20-8|® ®
—9 1 -1 2 —2-23 3
—2 -3 14 00 011 —2-637

00 00 4
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— Quotes by Great Mathematicians:
http://prezi.com/z0hgrw8abwql/define-math/

ILAS 2014 Official Photo : http://matrix.skku.ac.kr/2014-Album/ILAS-2014/

ILAS 2014 Movie A — Registration and Presentations : http://youtu.be/asJfRFYWPrk
ILAS 2014 Movie B — Tour . http://lyoutu.be/bidUNagmRXQ

ILAS 2014 Movie C — Banquet . http://lyoutu.be/10fDqWA-vVA

ILAS 2014 Movie D — Group Photo : http://youtu.be/61IS8U6GI_8E

ILAS 2014 Movie E — Conference Preparations : http://youtu.be/lUMwLCtSGBYI

ICM 2014, COEX, Seoul, Fields Medalists:

http://matrix.skku.ac.kr/2014-Album/2014-ICM-SGLee/
https://www.facebook.com/SEOULICM2014
http://www.icm2014.org/en/vod/videos
http://www.icm2014.org/en/vod/public
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http://matrix.skku.ac.kr/Cal-Book/Appnd/index.htm
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Sample Exam

@ Reference video: http://youtu.be/CLxikZUNJXw

e Practice site:
http://matrix.skku.ac.kr/CLA—Exams—Sol.pdf,

http://matrix.skku.ac.kr/2015—album/2015—LA—S—Exam—All—Sol.pdf
http://matrix.skku.ac.kr/2012—album/2012—LA—Lectures.htm

* Provides basic commands if you use Sage in your test.

<Sage Linear Algebra partial commands list>
var(‘a,b,c,d")
eql=3*a+3*b==12
eq2=5*a+2*b==13
solve([eq1, eq2], a,b)

# define variables
# define equation
# define equation?2
# solve system of

equations
A=matrix(CDF, 3, 3, [3, 0,0, 0, 0, 2, O, 3, 4])
# define matrix

A.echelon_form() # RREF

A.inverse() # inverse matrix
A.det() # determinant
A.adjoint() # adjoint matrix

A.eigenvalues() # eigenvalues

A.eigenvectors_right() # eigenvectors

A.charpoly() # characteristic equation

P,LU=A.LU()
(P: Permutation matrix / LU: triangle matrix)
vector([3, 1, 2])

# LU decomposition

# define vector
var(x, y') # define variables
plot3d(y”2+1-x"3-x, (x, -pi, pi), (v, -pi, pi))

# 3D Plot
implicit_plot3d(n.inner_product(p_0-p)==0,
-10, 10, (y, -10, 10), (z, -10, 10))

# 3D Hyperplane Plot

x

var('t) # define variable (parametric equations)

X=2+2*t

y=-3*t-2

parametric_plot((x,y), (t, -10, 10), rgbcolor="red")
# line Plot

— —

2. (

components of A~ ' are all integers.

. (3pt x 6= 18pt) True(T) or False(F). Let A=/, ., and u,v € R".

. () Every square matrix can be expressed as products of elementary matrices.

) Let nxXn matrix A has all integer components. If the determinant of A4 is 1, then the

) One can compute the solution of a system of linear equations with n unknowns and n equations

3. ( ) Let A, BEM,, then det(AB) =det(BA)
V- u
4, j .V =
() proj, o
5. (
by Cramer’s rule.
6. () 2x2 real matrix A satisfies \>+1tr(4)A+det(4)=0.

Il. Bpt x 4 = 12pt) State or Define

1. Choose 4 items from the list given in the box and describe them clearly and concisely.
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normal vector of a plane 77, linearly independent and linearly dependent, condition for subspace,
Cramer's Rule, eigenvalue, eigenvector, linear transformations, orthogonal matrix, for linear

transformation’s 7" : R"— R™ range, surjective or onto, injective or 1-1, isomorphism

[Subspace] A nonempty subset W of R" satisfying the following two properties,

{W]+W26W(1)
kw ew  (2)

is called a subspace of R". (where, w,,w,, wE W, kER)

[Standard Matrix] For a linear transformation, 7" : R"— R™ the range is defined as
ImT={TW)ER™ :vER"} c R™.
If 7:R"- R™ is a linear transformation and A =[ 7] is the standard matrix of 7, then for

XER", T(x)=Ax, V XER" where A= [T(e,): T(e,y): - : T(e,)].

lll. 3pt x 10 = 30pt) Find or Explain:

2. Find the equation of a plane passing through a point P (10, — 15, 4) and generated by two

vectors a= (4, 8, 7) and b= (4, 5, —6)in a vector equation form.

Ans  x = p+tiattb (t, t,ER)
=(10, —15,4) +t,(4,8,7)+,(4,5, —6). [ |

5. Suppose you got a job in a research lab and your boss asked you to find the eigenvalues, the

4102
0—120
0010
0403

eigenvectors, and the characteristic polynomial of a matrix 4= . Explain how to find them

with a step by step description. You may use Sage.

Sol
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1) Step 1: Open the webpage http://math1.skku.ackr .

2) Step 2: Log in to the webpage with ID= skku, PW = ***
3) Step 3: Press the button of “New Worksheet”

4) Step 4: In the first cell, define matrix A in CDF format.
A=matrix(CDF,4,4,[4,1,0,2,0,-1,2,0,0,0,1,0,0,4,0,3])

5) Step 5: In the second cell, enter the command to find eigenvalues

)
)
)
)

A.eigenvalues() and execute.

6) Step 6: In the third cell, enter the command to find eigenvectors
A.eigenvectors_right() and execute.

7) Step 7: In the fourth cell, enter the command to find characteristic polynomial

A.charpoly() and execute.

[4.0, 3.0, -1.0, 1.0]

[(40, [(1.0, O, O, 0), 1), (3.0, [(0.894427191, 0, 0O, -0.4472135955)], 1), (-1.0,
[(0.140028008403, 0.700140042014, 0, -0.700140042014)], 1),
(1.0, [(-0.377964473009, -0.377964473009, -0.377964473009, 0.755928946018)], 1)]

x4 - 7.0°x*3 + 11.0*x*2 + 7.0*x - 12.0 (Online Sage solution) [ |
101
8. For a given matrix A=|—1 3 0|, describe step by step process to find the inverse matrix by using
102
the Sage.

Sol

1) Step 1: (example) Open the webpage http://math1.skku.ac.kr .

2) Step 2: Log in to the webpage with ID= skku, PW = ***

3) Step 3: Press the button of “New Worksheet”

4) Step 4: In the first cell, define matrix A in CC format.
A=matrix(CC, 3, 3, [1,0,1,-0,3,0,1,0,2])

5) Step 5: In the second cell, enter the command A.inverse() to find the inverse.

[200 O -1.0]
[O 0.33 0]

[-1.00 O 1.00] H
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IV. 5pt x 5 = 25pt) Find or Explain:

1. Let a linear transformation 7" : B> —» R? transforms any vector x= (w,y)632 to a symmetric
point to the line which passing through the origin with slope 6. Find the transformation matrix

Hy,= [T(e,) : T(e,)] with the aid of following pictures.

Y Y

1 II
T sin20
%y
O'cos28 © £ ~0
T _
2

T(eg)=(cos(—g —29), —Sin(% —29))

Picture: The image of the standard basis by a symmetric transformation to the line
with slope 6.

c0s20 cos(%— 29)

sin20 — sin(%— 260

cos26 sin20

(Sol) Hy=[T(e,): T(e,)]= ) - [sin20 —cos26] "

2. Linear transformation (Linear operator): Let's define 7° ‘R*-> R” as a projective transformation,

which transforms any vector X in R* to projection on a line which passes through the origin

and has an angle # with x-axis. For the given transformation 7, let's define PQ as a

. . . . . 1
corresponding standard matrix. As shown by the right hand side picture, Pyx— x= E(ng— X)
<same direction with half length>. Now by using the matrix representation of symmetric

09829 sin2f ], find the standard matrix for 7.
sin26 — cos26

/ y=(tan®)x v
x .

T(x)

transformation Hy=

[} x -

Picture: Projective transformation to the The relationship between symmetric transformation

line with slope 6 and projective transformation to the line with slope 6
1 1 1.1 1 1
(Sol) Px—x= 5(}[9x— X) => P;x= o Hxt 5x= S Hyx+ - Ix= o (H, + D)x
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1 1.
—=(1+ cos26) 5sm29 cos20 sindcosd

1
= Py=—(H,+1)= =1 .
0 (Hy+1) sinfcosf sin’6

5 |

1 . 1
551n20 2(1 c0s26)

3. For invertible matrices 4 and B, explain why adj (AB) =adjB- adjA.
4. For a degree n square matrix A, explain why its eigenspace is a subspace of R".

Ans For a given square matrix A, let F();) be the eigenspace corresponding to an eigenvalue \;.
E\\) = {xER"4x= ) x}c R", kER, E\\)# O
Vx, yEE(\), xtyER" and kxER".
1) [Show the space is closed under the addition, that is, show x+y< E();)] Q2 pY

(Proof) Ax= \x, Ay=\y L x+yeEE())
Ax+y) = Ax+ Ay= \x+ \y= \ (x+y)

2) [Show the space is closed under the scalar multiplication, that is, show kx< E(\;)] (2 pt)
(Proof) A(kx)=kAx=k\x= ), (kx)
kxEE()\i)
o E();) is a subspace of R" as it fulfilled the above two conditions. (1 pt) [ |

T

5. For a linear transformation 7" : R"— R™, explain why Im 7" is a subspace of R"™.

[Math Genealogy Tree]

http://genealogy.math.ndsu.nodak.edu
http://genealogy.math.ndsu.nodak.edu/id.ph
p?id=45061
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Linear Algebra textbook for everyone.
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